Skip to main content

Advertisement

Log in

EDB-FN targeted probes for the surgical navigation, radionuclide imaging, and therapy of thyroid cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Extradomain B of fibronectin (EDB-FN) is a promising diagnostic and therapeutic biomarker for thyroid cancer (TC). Here, we identified a high-affinity EDB-FN targeted peptide named EDBp (AVRTSAD) and developed three EDBp-based probes, Cy5-PEG4-EDBp(Cy5-EDBp), [18F]-NOTA-PEG4-EDBp([18F]-EDBp), and [177Lu]-DOTA-PEG4-EDBp ([177Lu]-EDBp), for the surgical navigation, radionuclide imaging, and therapy of TC.

Methods

Based on the previously identified EDB-FN targeted peptide ZD2, the optimized EDB-FN targeted peptide EDBp was identified by using the alanine scan strategy. Three EDBp-based probes, Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp, were developed for fluorescence imaging, positron emission tomography (PET) imaging, and radiotherapy in TC tumor-bearing mice, respectively. Additionally, [18F]-EDBp was evaluated in two TC patients.

Results

The binding affinity of EDBp to the EDB fragment protein (Kd = 14.4 ± 1.4 nM, n = 3) was approximately 336-fold greater than that of the ZD2 (Kd = 4839.7 ± 361.7 nM, n = 3). Fluorescence imaging with Cy5-EDBp facilitated the complete removal of TC tumors. [18F]-EDBp PET imaging clearly delineated TC tumors, with high tumor uptake (16.43 ± 1.008%ID/g, n = 6, at 1-h postinjection). Radiotherapy with [177Lu]-EDBp inhibited tumor growth and prolonged survival in TC tumor-bearing mice (survival time of different treatment groups: saline vs. EDBp vs. ABRAXANE vs. [177Lu]-EDBp = 8.00 d vs. 8.00 d vs. 11.67 d vs. 22.33 d, ***p < 0.001). Importantly, the first-in-human evaluation of [18F]-EDBp demonstrated that it had specific targeting properties (SUVmax value of 3.6) and safety.

Conclusion

Cy5-EDBp, [18F]-EDBp, and [177Lu]-EDBp are promising candidates for the surgical navigation, radionuclide imaging, and radionuclide therapy of TC, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the research database of SYSCC.

References

  1. Brown R, de Souza J, Cohen. Thyroid cancer: burden of illness and management of disease. J Cancer Res Clin Oncol. 2011;2:193–9.

  2. Liu W, Wang S, Xia X, Guo M. A proposed heterogeneous ensemble algorithm model for predicting central lymph node metastasis in papillary thyroid cancer. International journal of general medicine. 2022;15:4717–32.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carling T, Udelsman R. Thyroid cancer. Annu Rev Med. 2014;65:125–37.

    Article  CAS  PubMed  Google Scholar 

  4. Ciavardelli D, Bellomo M, Consalvo A, Crescimanno C, Vella V. Metabolic alterations of thyroid cancer as potential therapeutic targets. Biomed Res Int. 2017;2017:2545031.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sinclair C, Téllez M, Peláez-Cruz R, Díaz-Baamonde A, Ulkatan S. Continuous neuromonitoring during radiofrequency ablation of benign thyroid nodules provides objective evidence of laryngeal nerve safety. Am J Surg. 2021;222(2):354–60.

    Article  PubMed  Google Scholar 

  6. Terroir M, Caramella C, Borget I, Bidault S, Dromain C, El Farsaoui K, et al. F-18-Dopa positron emission tomography/computed tomography is more sensitive than whole-body magnetic resonance imaging for the localization of persistent/recurrent disease of medullary thyroid cancer patients. Thyroid. 2019;29(10):1457–64.

    Article  CAS  PubMed  Google Scholar 

  7. Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli J, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91(8):2892–9.

  8. Verburg F, Mäder U, Tanase K, Thies E, Diessl S, Buck A, et al. Life expectancy is reduced in differentiated thyroid cancer patients ≥ 45 years old with extensive local tumor invasion, lateral lymph node, or distant metastases at diagnosis and normal in all other DTC patients. Clin Endocrinol. 2013;98(1):172–80.

    Article  CAS  Google Scholar 

  9. Lin Y, Qin S, Li Z, Yang H, Fu W, Li S, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine-refractory differentiated thyroid cancer: the REALITY randomized clinical trial. JAMA Oncol. 2022;8(2):242–50.

    Article  PubMed  Google Scholar 

  10. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  11. Hu D, Ansari D, Zhou Q, Sasor A, Said Hilmersson K, Andersson R. Stromal fibronectin expression in patients with resected pancreatic ductal adenocarcinoma. World J Surg Oncol. 2019;17(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saw P, Xu X, Kang B, Lee J, Lee Y, Kim C, et al. Extra-domain B of fibronectin as an alternative target for drug delivery and a cancer diagnostic and prognostic biomarker for malignant glioma. Theranostics. 2021;11(2):941–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soikkeli J, Podlasz P, Yin M, Nummela P, Jahkola T, Virolainen S, et al. Metastatic outgrowth encompasses COL-I, FN1, and POSTN up-regulation and assembly to fibrillar networks regulating cell adhesion, migration, and growth. Am J Pathol. 2010;177(1):387–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shevalye H, Stavniichuk R, Xu W, Zhang J, Lupachyk S, Maksimchyk Y, et al. Poly(ADP-ribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model. Biochem Pharmacol. 2010;79(7):1007–14.

    Article  CAS  PubMed  Google Scholar 

  15. Ventura E, Cordazzo C, Quarto R, Zardi L, Rosano C. C6: a monoclonal antibody specific for a fibronectin epitope situated at the interface between the oncofoetal extra-domain B and the repeat III8. PLoS ONE. 2016;11(2): e0148103.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fuenmayor J, Montaño R. Novel antibody-based proteins for cancer immunotherapy. Cancers (Basel). 2011;3(3):3370–93.

    Article  CAS  PubMed  Google Scholar 

  17. Ye X, Zhao Y, Wang Q, Xiao W, Zhao J, Peng Y, et al. EDB Fibronectin-specific SPECT probe Tc-HYNIC-ZD2 for breast cancer detection. ACS Omega. 2017;2(6):2459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiao P, Ayat N, Vaidya A, Gao S, Sun W, Chou S, et al. Magnetic resonance molecular imaging of extradomain B fibronectin improves imaging of pancreatic cancer tumor xenografts. Front Oncol. 2020;10: 586727.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Inoue M, Matsumoto K, Tanaka M, Yoshida Y, Satake R, Goto F, et al. Analysis of chemotherapy-induced peripheral neuropathy using the Japanese Adverse Drug Event Report database. Sci Rep. 2021;11(1):11324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Won S. Anatomical considerations of the superior thyroid artery: its origins, variations, and position relative to the hyoid bone and thyroid cartilage. Anatomy cell biology. 2016;49(2):138–42.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sy A, Regonne E, Fofana A, Diandy Y, Ndiaye MJIjoo. Indications and morbidity of reoperative thyroid surgeries in a Military Hospital of Senegal. International journal of otolaryngology. 2017;2017:4045617.

  22. Lee S, Kang S, Kim K, Kang S, Shin Y, Chang J, et al. Nonthermal plasma induces apoptosis in ATC cells: involvement of JNK and p38 MAPK-dependent ROS. Yonsei Med J. 2014;55(6):1640–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang W, Qin W, Hu Z, Suo Y, Zhao R, Ma X, et al. Comparison of Cerenkov luminescence imaging (CLI) and gamma camera imaging for visualization of let-7 expression in lung adenocarcinoma A549 Cells. Nuclear medicine biology. 2012;39(7):948–53.

    Article  CAS  PubMed  Google Scholar 

  24. Hu Z, Qu Y, Wang K, Zhang X, Zha J, Song T, et al. In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging. Nat Commun. 2015;6:7560.

    Article  PubMed  Google Scholar 

  25. Hu Z, Fang C, Li B, Zhang Z, Cao C, Cai M, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nature biomedical engineering. 2020;4(3):259–71.

    Article  PubMed  Google Scholar 

  26. Shi X, Xu P, Cao C, Cheng Z, Tian J, Hu Z. PET/NIR-II fluorescence imaging and image-guided surgery of glioblastoma using a folate receptor α-targeted dual-modal nanoprobe. European journal of nuclear medicine molecular imaging. 2022;49(13):4325–37.

    Article  CAS  PubMed  Google Scholar 

  27. Wei W, Jiang D, Rosenkrans Z, Barnhart T, Engle J, Luo Q, et al. HER2-targeted multimodal imaging of anaplastic thyroid cancer. Am J Cancer Res. 2019;9(11):2413–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jung Y, Kim S, Park I, Ryu J, Kim S, Lee C, et al. Surgical targeting of recurrent thyroid cancer using a novel mixture of 99m-technetium macroaggregated albumin and indocyanine green. Surgical innovation. 2014;21(6):622–9.

    Article  PubMed  Google Scholar 

  29. Gubbi S, Koch C, Klubo-Gwiezdzinska. Peptide receptor radionuclide therapy in thyroid cancer. Frontiers in endocrinology. 2022;13:896287.

  30. Navalkissoor S, Grossman A. Targeted alpha particle therapy for neuroendocrine tumours: the next generation of peptide receptor radionuclide therapy. Neuroendocrinology. 2019;108(3):256–64.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Y, Watabe T, Kaneda-Nakashima K, Shirakami Y, Naka S, Ooe K, et al. Fibroblast activation protein targeted therapy using [Lu]FAPI-46 compared with [Ac]FAPI-46 in a pancreatic cancer model. Eur J Nucl Med Mol Imaging. 2022;49(3):871–80.

    Article  CAS  PubMed  Google Scholar 

  32. Oroujeni M, Tano H, Vorobyeva A, Liu Y, Vorontsova O, Xu T, et al. Affibody-mediated PNA-based pretargeted co-treatment improves survival of trastuzumab-treated mice bearing HER2-expressing xenografts. J Nucl Med. 2021.

  33. Galbiati A, Zana A, Bocci M, Millul J, Elsayed A, Mock J, et al. A novel dimeric FAP-targeting small molecule-radio conjugate with high and prolonged tumour uptake. J Nucl Med. 2022.

Download references

Funding

This work was supported by grants from Natural Science Foundation of China (81972531), Fundamental Research Funds for the Central Universities (19ykpy174).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design, WF, GF, and CY; acquisition of data, RL, HH, XL, XZ, ZL, HZ, and WZ; analysis and interpretation of data, RL; drafting of the manuscript, RL, GKF, and JY; critical revision of the manuscript for important intellectual content, GKF and WF; obtained funding, GKF and WF; administrative, technical, or material support, XL, ZL, HZ, JY, KF, and WF; and study supervision, WF, GKF, and CY.

Corresponding authors

Correspondence to Chunjing Yu, Guokai Feng or Wei Fan.

Ethics declarations

Ethics approval

The study has been approved by the institutional review board of Sun Yat-sen Cancer Center (SYSCC) and Affiliated Hospital of Jiangnan University (ethical code: LS2023011). All animal experiments were approved by the Institutional Animal Care and Use Committee at SYSCC (ethical code: L102012021080H). And the experiment of human tissues was approved by Ethics Committee of SYSCC (ethical code: B2022-434–01).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology-Head and Neck.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9853 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., He, H., Li, X. et al. EDB-FN targeted probes for the surgical navigation, radionuclide imaging, and therapy of thyroid cancer. Eur J Nucl Med Mol Imaging 50, 2100–2113 (2023). https://doi.org/10.1007/s00259-023-06147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06147-x

Keywords

Navigation