Skip to main content

Advertisement

Log in

A prospective comparative study of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT imaging in suspicious prostate cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Prostate-specific membrane antigen (PSMA)–based PET/CT imaging has limitations in the diagnosis of prostate cancer (PCa). We recruited 207 participants with suspicious PCa to perform PET/CT imaging with radiolabeled gastrin-releasing peptide receptor (GRPR) antagonist, [68Ga]Ga-RM26, and compare with [68Ga]Ga-PSMA-617 and histopathology.

Methods

Every participant with suspicious PCa was scanned with both [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT. PET/CT imaging was compared using pathologic specimens as a reference standard.

Results

Of the 207 participants analyzed, 125 had cancer, and 82 were diagnosed with benign prostatic hyperplasia (BPH). The sensitivity and specificity of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT imaging differed significantly for detecting clinically significant PCa. The area under the ROC curve (AUC) was 0.54 for [68Ga]Ga-RM26 PET/CT and 0.91 for [68Ga]Ga-PSMA-617 PET/CT in detecting PCa. For clinically significant PCa imaging, the AUCs were 0.51 vs. 0.93, respectively. [68Ga]Ga-RM26 PET/CT imaging had higher sensitivity for PCa with Gleason score (GS) = 6 (p = 0.03) than [68Ga]Ga-PSMA-617 PET/CT but poor specificity (20.73%). In the group with PSA < 10 ng/mL, the sensitivity, specificity, and AUC of [68Ga]Ga-RM26 PET/CT were lower than [68Ga]Ga-PSMA-617 PET/CT (60.00% vs. 80.30%, p = 0.12, 23.26% vs. 88.37%, p = 0.000, and 0.524 vs. 0.822, p = 0.000, respectively). [68Ga]Ga-RM26 PET/CT exhibited significantly higher SUVmax in specimens with GS = 6 (p = 0.04) and in the low-risk group (p = 0.01), and its uptake did not increase with PSA level, GS, or clinical stage.

Conclusion

This prospective study provided evidence for the superior accuracy of [68Ga]Ga-PSMA-617 PET/CT over [68Ga]Ga-RM26 PET/CT in detecting more clinically significant PCa. [68Ga]Ga-RM26 PET/CT showed an advantage for imaging low-risk PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The study protocol and individual participant data reported in this article (text, tables, figures, and appendices) will all be available between 9 and 36 months after article publication. All related data are shared with researchers who provided an approved proposal. Requests for data should be directed by email to Yi Cai. Data requestors will need to sign a data access agreement.

Abbreviations

GRPR:

Gastrin-releasing peptide receptor

PSMA:

Prostate-specific membrane antigen

PSA:

Prostate-specific antigen

GS:

Gleason score

PCa:

Prostate cancer

BPH:

Benign prostatic hyperplasia

PET/CT:

Positron emission tomography/computed tomography

SUVmax:

Maximum standard uptake value

AUC:

Area under the ROC curve

HE:

Hematoxylin and eosin

IHC:

Immunohistochemistry

References

  1. Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA: A Cancer J Clin. 2021;71:7–33.

    Google Scholar 

  2. Fanti S, Minozzi S, Antoch G, et al. Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncol. 2018;19:e696–708.

    Article  PubMed  Google Scholar 

  3. Porfyris O, Al-Awon A, Liatsikos E, et al. Novel imaging in prostate cancer. Urol Ann. 2020;12:205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silver DA, Pellicer I, Fair WR, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3:81–5.

    CAS  PubMed  Google Scholar 

  5. Paschalis A, Sheehan B, Riisnaes R, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76:469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ross JS, Sheehan CE, Fisher HA, et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 2003;9:6357–62.

    CAS  PubMed  Google Scholar 

  7. Perera M, Papa N, Roberts M, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77:403–17.

    Article  PubMed  Google Scholar 

  8. Cytawa W, Seitz AK, Kircher S, et al. (68)Ga-PSMA I&T PET/CT for primary staging of prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47:168–77.

    Article  CAS  PubMed  Google Scholar 

  9. Meyrick DP, Asokendaran M, Skelly LA, et al. The role of 68Ga-PSMA-I&T PET/CT in the pretreatment staging of primary prostate cancer. Nucl Med Commun. 2017;38:956–63.

    Article  PubMed  Google Scholar 

  10. Hofman MS, Hicks RJ, Maurer T, et al. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, normal patterns, pearls, and pitfalls. Radiographics. 2018;38:200–17.

    Article  PubMed  Google Scholar 

  11. Parent EE, Schuster DM. Update on (18)F-fluciclovine PET for prostate cancer imaging. J Nucl Med. 2018;59:733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nitsch S, Hakenberg OW, Heuschkel M, et al. Evaluation of prostate cancer with 11C- and 18F-choline PET/CT: diagnosis and initial staging. J Nucl Med. 2016;57:38S-42S.

    Article  PubMed  Google Scholar 

  13. Beer M, Montani M, Gerhardt J, et al. Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate. 2012;72:318–25.

    Article  CAS  PubMed  Google Scholar 

  14. Mansi R, Fleischmann A, Mäcke HR, et al. Targeting GRPR in urological cancers–from basic research to clinical application. Nat Rev Urol. 2013;10:235–44.

    Article  CAS  PubMed  Google Scholar 

  15. Schollhammer R, Robert G, Asselineau J et al. Comparison of 68Ga-PSMA-617 PET/CT and 68Ga-RM2 PET/CT in patients with localized prostate cancer candidate for radical prostatectomy: a prospective, single arm, single center, phase II study. J Nucl Med 2022;jnumed.122.263889.

  16. Kähkönen E, Jambor I, Kemppainen J, et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19:5434–43.

    Article  PubMed  Google Scholar 

  17. Morgat C, Mishra AK, Varshney R, et al. Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y receptors. J Nucl Med. 2014;55:1650–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wieser G, Mansi R, Grosu AL, et al. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist–from mice to men. Theranostics. 2014;4:412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mansi R, Minamimoto R, Mäcke H, et al. Bombesin-targeted PET of prostate cancer. J Nucl Med. 2016;57:67S-72S.

    Article  CAS  PubMed  Google Scholar 

  20. Nock BA, Kaloudi A, Lymperis E, et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J Nucl Med. 2017;58:75–80.

    Article  CAS  PubMed  Google Scholar 

  21. Gauthé M, Sargos P, Barret E, et al. Potential targets other than PSMA for prostate cancer theranostics: a systematic review. J Clin Med. 2021;10(21):4909.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schollhammer R, De Clermont GH, Yacoub M, et al. Comparison of the radiolabeled PSMA-inhibitor (111)In-PSMA-617 and the radiolabeled GRP-R antagonist (111)In-RM2 in primary prostate cancer samples. EJNMMI Res. 2019;9:52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Touijer KA, Michaud L, Alvarez H, et al. Prospective study of the radiolabeled GRPR antagonist BAY86-7548 for positron emission tomography/computed tomography imaging of newly diagnosed prostate cancer. Eur Urol Oncol. 2019;2:166–73.

    Article  PubMed  Google Scholar 

  24. Baratto L, Song H, Duan H, et al. PSMA- and GRPR-targeted PET: results from 50 patients with biochemically recurrent prostate cancer. J Nucl Med. 2021;62:1545–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang J, Niu G, Fan X, et al. PET using a GRPR antagonist (68)Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med. 2018;59:922–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sah BR, Burger IA, Schibli R, et al. Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue BAY 864367 in patients with prostate cancer. J Nucl Med. 2015;56:372–8.

    Article  CAS  PubMed  Google Scholar 

  27. Fassbender TF, Schiller F, Mix M, et al. Accuracy of [(68)Ga]Ga-RM2-PET/CT for diagnosis of primary prostate cancer compared to histopathology. Nucl Med Biol. 2019;70:32–8.

    Article  CAS  PubMed  Google Scholar 

  28. Bakker IL, Fröberg AC, Busstra MB, et al. GRPr Antagonist (68)Ga-SB3 PET/CT imaging of primary prostate cancer in therapy-Naïve patients. J Nucl Med. 2021;62:1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arena F. Specific antigen prostatic changes during treatment with finasteride or dutasteride for benign prostatic hyperplasia. Minerva Urol Nefrol. 2013;65:211–6.

    CAS  PubMed  Google Scholar 

  30. Qiu DX, Li J, Zhang JW, et al. Dual-tracer PET/CT-targeted, mpMRI-targeted, systematic biopsy, and combined biopsy for the diagnosis of prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2022;49(8):2821–32.

    Article  CAS  PubMed  Google Scholar 

  31. Ceci F, Oprea-Lager DE, Emmett L, et al. E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging. 2021;48:1626–38.

    Article  PubMed  PubMed Central  Google Scholar 

  32. van Leenders G, van der Kwast TH, Grignon DJ, et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol. 2020;44:e87–99.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

    Article  CAS  PubMed  Google Scholar 

  34. Woythal N, Arsenic R, Kempkensteffen C, et al. Immunohistochemical validation of PSMA expression measured by (68)Ga-PSMA PET/CT in primary prostate cancer. J Nucl Med. 2018;59:238–43.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang J, Shao S, Wu P, et al. Diagnostic performance of (68)Ga-PSMA PET/CT in the detection of prostate cancer prior to initial biopsy: comparison with cancer-predicting nomograms. Eur J Nucl Med Mol Imaging. 2019;46:908–20.

    Article  PubMed  Google Scholar 

  36. Bakker IL, Fröberg AC, Busstra MB, et al. GRPr Antagonist (68)Ga-SB3 PET/CT imaging of primary prostate cancer in therapy-Naïve patients. J Nucl Med. 2021;62:1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagasaki S, Nakamura Y, Maekawa T, et al. Immunohistochemical analysis of gastrin-releasing peptide receptor (GRPR) and possible regulation by estrogen receptor βcx in human prostate carcinoma. Neoplasma. 2012;59:224–32.

    Article  CAS  PubMed  Google Scholar 

  38. Kähkönen E, Jambor I, Kemppainen J, et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19:5434–43.

    Article  PubMed  Google Scholar 

  39. Zhang J, Niu G, Fan X, et al. PET using a GRPR antagonist (68)Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med. 2018;59:922–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lau J, Rousseau E, Zhang Z, et al. Positron emission tomography imaging of the gastrin-releasing peptide receptor with a novel bombesin analogue. ACS Omega. 2019;4:1470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ginj M, Zhang H, Waser B, et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A. 2006;103:16436–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van de Wiele C, Dumont F, Dierckx RA, et al. Biodistribution and dosimetry of (99 m)Tc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med. 2001;42:1722–7.

    PubMed  Google Scholar 

  43. Yang M, Gao H, Zhou Y, et al. F-labeled GRPR agonists and antagonists: a comparative study in prostate cancer imaging. Theranostics. 2011;1:220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fani M, Braun F, Waser B, et al. Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications. J Nucl Med. 2012;53:1481–9.

    Article  CAS  PubMed  Google Scholar 

  45. Varasteh Z, Mitran B, Rosenström U, et al. The effect of macrocyclic chelators on the targeting properties of the 68Ga-labeled gastrin releasing peptide receptor antagonist PEG2-RM26. Nucl Med Biol. 2015;42:446–54.

    Article  CAS  PubMed  Google Scholar 

  46. Koerber SA, Utzinger MT, Kratochwil C, et al. (68)Ga-PSMA-11 PET/CT in newly diagnosed carcinoma of the prostate: correlation of intraprostatic PSMA uptake with several clinical parameters. J Nucl Med. 2017;58:1943–8.

    Article  CAS  PubMed  Google Scholar 

  47. Beer M, Montani M, Gerhardt J, et al. Profiling gastrin-releasing peptide receptor in prostate tissues: clinical implications and molecular correlates. Prostate. 2012;72:318–25.

    Article  CAS  PubMed  Google Scholar 

  48. Loeb S, Bjurlin MA, Nicholson J, et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol. 2014;65:1046–55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol. 2021;18:79–92.

    Article  PubMed  Google Scholar 

  50. Eder M, Schäfer M, Bauder-Wüst U, et al. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74:659–68.

    Article  CAS  PubMed  Google Scholar 

  51. Rivera-Bravo B, Ramírez-Nava G, Mendoza-Figueroa MJ, et al. [(68)Ga]Ga-iPSMA-Lys(3)-Bombesin: biokinetics, dosimetry and first patient PET/CT imaging. Nucl Med Biol. 2021;96–97:54–60.

    Article  PubMed  Google Scholar 

  52. Fassbender TF, Schiller F, Zamboglou C, et al. Voxel-based comparison of [(68)Ga]Ga-RM2-PET/CT and [(68)Ga]Ga-PSMA-11-PET/CT with histopathology for diagnosis of primary prostate cancer. EJNMMI Res. 2020;10:62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sgouros G, Bodei L, McDevitt MR, et al. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19:589–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fallah J, Agrawal S, Gittleman H et al. FDA approval summary: lutetium Lu 177 vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2022;CCR-22-2875.

  55. Kurth J, Krause BJ, Schwarzenböck SM, et al. First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [(177)Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging. 2020;47:123–35.

    Article  CAS  PubMed  Google Scholar 

  56. Gnesin S, Cicone F, Mitsakis P, et al. First in-human radiation dosimetry of the gastrin-releasing peptide (GRP) receptor antagonist (68)Ga-NODAGA-MJ9. EJNMMI Res. 2018;8:108.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nock BA, Kaloudi A, Lymperis E, et al. Theranostic perspectives in prostate cancer with the gastrin-releasing peptide receptor antagonist NeoBOMB1: preclinical and first clinical results. J Nucl Med. 2017;58:75–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by funding from the National Natural Science Foundation of China (91859207, 81771873, 82003130, 81800590, and 81801740), the Science and Technology Innovation Program of Hunan Province (2021RC4056), the Key Research and Development Program of Hunan Province (2021SK2014), the Natural Science Foundation of Hunan Province (2021JJ40983, 2020JJ5882, and 2020JJ5922), and the Clinical Research Fund Project of National Geriatric Disease Clinical Research Center (2020LNJJ01).

Author information

Authors and Affiliations

Authors

Contributions

YC, MFC, and XBZ enrolled the participants. HLY and XMG contributed to pathological data. YXT and JL conducted the imaging analysis from PET/CT. MFC, XBZ, and SH verified the raw data. XMG, YXT, and YC conceived the study, analyzed the data, and prepared the manuscript. All authors critically reviewed and approved the final manuscript for publication.

Corresponding authors

Correspondence to Xiongbin Zu, Yi Cai or Shuo Hu.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the local ethics committee.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Disclaimer

The study sponsors had no role in study design, data collection, data analyses, data interpretation, or manuscript writing.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Genitourinary.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2258 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Tang, Y., Chen, M. et al. A prospective comparative study of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT imaging in suspicious prostate cancer. Eur J Nucl Med Mol Imaging 50, 2177–2187 (2023). https://doi.org/10.1007/s00259-023-06142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06142-2

Keywords

Navigation