Skip to main content

Advertisement

Log in

Dual-tracer PET/CT-targeted, mpMRI-targeted, systematic biopsy, and combined biopsy for the diagnosis of prostate cancer: a pilot study

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Growing evidence proved the efficacy of multi-parametric MRI (mpMRI) and prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT)-guided targeted biopsy (TB) in prostate cancer (PCa) diagnosis, but there is no direct comparison between mpMRI-TB and PSMA PET/CT-TB. Gastrin-releasing peptide receptor (GRPR) is highly expressed in PCa, which can compensate for the unstable expression of PSMA in PCa. Therefore, we designed a study to compare the efficiency of mpMRI-TB, dual-tracer (GRPR and PSMA) PET/CT-TB, systematic biopsy, and combined biopsy for the diagnosis of prostate cancer.

Methods

One hundred twelve suspicious PCa patients were enrolled from September 2020 to June 2021. Patients with anyone of positive dual-tracer PET/CT or mpMRI underwent TB, and all enrolled patients underwent systematic biopsy (SB) after TB. The primary outcome was the detection rates of PCa in different biopsy strategies. Secondary outcomes were the performance of three imaging methods, omission diagnostic rates, and upgrading and downgrading of biopsy samples relative to those of prostatectomy specimens in different biopsy strategies. McNemar’s tests and Bonferroni correction in multiple comparisons were used to compare the primary and secondary outcomes.

Results

In 112 men, clinically significant PCa (grade group[GG] ≥ 2) accounted for 34.82% (39/112), and nonclinically significant PCa (GG = 1) accounted for 4.46% (5/112). 68 Ga-PSMA PET/CT-TB achieved higher PCa detection rate (69.77%) and positive ratio of biopsy cores (0.44) compared with SB (39.29% and 0.12) and mpMRI-TB (36.14% and 0.23), respectively (P < 0.005). Dual-tracer PET/CT screen out patients for avoiding 52.67% (59/112) unnecessary biopsy, whereas dual-tracer PET/CT-TB plus SB achieved high detection rate (77.36%) without misdiagnosis of csPCa.

Conclusion

Dual-tracer PET/CT might screen patients for avoiding unnecessary biopsy. Dual-tracer PET/CT-TB plus SB might be a more effective and promising strategy for the definite diagnosis of clinically significant PCa than mpMRI-TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The individual participant data study protocol, statistical analysis plan, analytical code text, tables, figure, and appendices will all be available. Data will be available between 9 and 36 months after the article publication. All related data is available for analyses that achieve the aims of the approved proposal. Requests for data should be directed by email to Yi Cai. Data requestors will need to sign a data access agreement first to obtain data.

Abbreviations

TB :

Targeted biopsy

SB :

Systematic biopsy

mpMRI :

Multi-parametric magnetic resonance imaging

PSMA :

Prostate-specific membrane antigen

GRPR :

Gastrin-releasing peptide receptor

PET/CT :

Positron emission tomography/computed tomography

GG :

Grade group

PCa :

Prostate cancer

csPCa :

Clinically significant prostate cancers

ncsPCa :

Nonclinically significant prostate cancers

RP :

Radical prostatectomy

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: a cancer journal for clinicians. 2020;70.https://doi.org/10.3322/caac.21590.

  2. Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med. 2016;375:1415–24. https://doi.org/10.1056/NEJMoa1606220.

    Article  PubMed  Google Scholar 

  3. Bill-Axelson A, Holmberg L, Garmo H, Taari K, Busch C, Nordling S, et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up. N Engl J Med. 2018;379:2319–29. https://doi.org/10.1056/NEJMoa1807801.

    Article  PubMed  Google Scholar 

  4. Cornford P, van den Bergh RCN, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M, et al. EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer. Part II-2020 update: treatment of relapsing and metastatic prostate cancer. European urology. 2021;79:263–82. https://doi.org/10.1016/j.eururo.2020.09.046.

  5. Lowrance WT, Breau RH, Chou R, Chapin BF, Crispino T, Dreicer R, et al. Advanced prostate cancer: AUA/ASTRO/SUO guideline part I. J Urol. 2021;205:14–21. https://doi.org/10.1097/JU.0000000000001375.

    Article  PubMed  Google Scholar 

  6. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet (London, England). 2017;389:815–22. https://doi.org/10.1016/S0140-6736(16)32401-1.

    Article  Google Scholar 

  7. Ahdoot M, Wilbur AR, Reese SE, Lebastchi AH, Mehralivand S, Gomella PT, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med. 2020;382:917–28. https://doi.org/10.1056/NEJMoa1910038.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Elkhoury FF, Felker ER, Kwan L, Sisk AE, Delfin M, Natarajan S, et al. Comparison of targeted vs systematic prostate biopsy in men who are biopsy naive: the Prospective Assessment of Image Registration in the Diagnosis of Prostate Cancer (PAIREDCAP) study. JAMA Surg. 2019;154:811–8. https://doi.org/10.1001/jamasurg.2019.1734.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rouvière O, Puech P, Renard-Penna R, Claudon M, Roy C, Mège-Lechevallier F, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 2019;20:100–9. https://doi.org/10.1016/s1470-2045(18)30569-2.

    Article  PubMed  Google Scholar 

  10. Schoots IG, Roobol MJ, Nieboer D, Bangma CH, Steyerberg EW, Hunink MG. Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol. 2015;68:438–50. https://doi.org/10.1016/j.eururo.2014.11.037.

    Article  PubMed  Google Scholar 

  11. van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur Urol. 2019;75:570–8. https://doi.org/10.1016/j.eururo.2018.11.023.

    Article  PubMed  Google Scholar 

  12. Panebianco V, Barchetti G, Simone G, Del Monte M, Ciardi A, Grompone MD, et al. Negative multiparametric magnetic resonance imaging for prostate cancer: what’s next? Eur Urol. 2018;74:48–54. https://doi.org/10.1016/j.eururo.2018.03.007.

    Article  PubMed  Google Scholar 

  13. Sonn GA, Fan RE, Ghanouni P, Wang NN, Brooks JD, Loening AM, et al. Prostate magnetic resonance imaging interpretation varies substantially across radiologists. Eur Urol Focus. 2019;5:592–9. https://doi.org/10.1016/j.euf.2017.11.010.

    Article  PubMed  Google Scholar 

  14. Lopci E, Guazzoni G, Lazzeri M. Ga Prostate-specific membrane antigen PET/CT for primary diagnosis of prostate cancer: complementary or alternative to multiparametric MR imaging. Radiology. 2018;287:725–6. https://doi.org/10.1148/radiol.2017172607.

    Article  PubMed  Google Scholar 

  15. Lopci E, Lughezzani G, Castello A, Colombo P, Casale P, Saita A, et al. PSMA-PET and micro-ultrasound potential in the diagnostic pathway of prostate cancer. Clin Transl Oncol. 2021;23:172–8. https://doi.org/10.1007/s12094-020-02384-w.

    Article  CAS  PubMed  Google Scholar 

  16. Lopci E, Saita A, Lazzeri M, Lughezzani G, Colombo P, Buffi NM, et al. Ga-PSMA positron emission tomography/computerized tomography for primary diagnosis of prostate cancer in men with contraindications to or negative multiparametric magnetic resonance imaging: a prospective observational study. J Urol. 2018;200. https://doi.org/10.1016/j.juro.2018.01.079.

  17. Paschalis A, Sheehan B, Riisnaes R, Rodrigues DN, Gurel B, Bertan C, et al. Prostate-specific membrane antigen heterogeneity and DNA repair defects in prostate cancer. Eur Urol. 2019;76:469–78. https://doi.org/10.1016/j.eururo.2019.06.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mapelli P, Ghezzo S, Samanes Gajate AM, Preza E, Brembilla G, Cucchiara V, et al. Preliminary results of an ongoing prospective clinical trial on the use of 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI in staging of high-risk prostate cancer patients. Diagnostics. 2021;11. https://doi.org/10.3390/diagnostics11112068.

  19. Budäus L, Leyh-Bannurah S-R, Salomon G, Michl U, Heinzer H, Huland H, et al. Initial experience of (68)Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol. 2016;69:393–6. https://doi.org/10.1016/j.eururo.2015.06.010.

    Article  PubMed  Google Scholar 

  20. Sheikhbahaei S, Afshar-Oromieh A, Eiber M, Solnes LB, Javadi MS, Ross AE, et al. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging. 2017;44:2117–36. https://doi.org/10.1007/s00259-017-3780-7.

    Article  PubMed  Google Scholar 

  21. Donato P, Roberts MJ, Morton A, Kyle S, Coughlin G, Esler R, et al. Improved specificity with (68)Ga PSMA PET/CT to detect clinically significant lesions “invisible” on multiparametric MRI of the prostate: a single institution comparative analysis with radical prostatectomy histology. Eur J Nucl Med Mol Imaging. 2019;46:20–30. https://doi.org/10.1007/s00259-018-4160-7.

    Article  PubMed  Google Scholar 

  22. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70:829–36. https://doi.org/10.1016/j.eururo.2015.12.053.

    Article  CAS  PubMed  Google Scholar 

  23. Wang B, Gao J, Zhang Q, Fu Y, Liu G, Shi J, et al. Diagnostic value of (68)Ga-PSMA PET/CT for detection of phosphatase and tensin homolog expression in prostate cancer: a pilot study. J Nucl Med. 2020;61:873–80. https://doi.org/10.2967/jnumed.119.236059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Q, Zang S, Zhang C, Fu Y, Lv X, Zhang Q, et al. Comparison of Ga-PSMA-11 PET-CT with mpMRI for preoperative lymph node staging in patients with intermediate to high-risk prostate cancer. J Transl Med. 2017;15:230. https://doi.org/10.1186/s12967-017-1333-2.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu C, Liu T, Zhang Z, Zhang N, Du P, Yang Y, et al. Ga-PSMA PET/CT combined with PET/ultrasound-guided prostate biopsy can diagnose clinically significant prostate cancer in men with previous negative biopsy results. J Nucl Med. 2020;61:1314–9. https://doi.org/10.2967/jnumed.119.235333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang L-L, Li W-C, Xu Z, Jiang N, Zang S-M, Xu L-W, et al. Ga-PSMA PET/CT targeted biopsy for the diagnosis of clinically significant prostate cancer compared with transrectal ultrasound guided biopsy: a prospective randomized single-centre study. Eur J Nucl Med Mol Imaging. 2021;48:483–92. https://doi.org/10.1007/s00259-020-04863-2.

    Article  CAS  PubMed  Google Scholar 

  27. Lopci E, Colombo P, Lazzeri M. Mismatched imaging findings of prostate cancer diagnosis: 68 Ga-PSMA PET/CT vs mpMRI. Nucl Med Mol Imaging. 2021;55:199–202. https://doi.org/10.1007/s13139-021-00701-x.

    Article  PubMed  Google Scholar 

  28. Lopci E, Lughezzani G, Castello A, Saita A, Colombo P, Hurle R, et al. Prospective evaluation of Ga-labeled prostate-specific membrane antigen ligand positron emission tomography/computed tomography in primary prostate cancer diagnosis. Eur Urol Focus. 2021;7:764–71. https://doi.org/10.1016/j.euf.2020.03.004.

    Article  PubMed  Google Scholar 

  29. Uprimny C, Kroiss AS, Decristoforo C, Fritz J, von Guggenberg E, Kendler D, et al. Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur J Nucl Med Mol Imaging. 2017;44:941–9. https://doi.org/10.1007/s00259-017-3631-6.

    Article  CAS  PubMed  Google Scholar 

  30. Mansi R, Fleischmann A, Mäcke HR, Reubi JC. Targeting GRPR in urological cancers–from basic research to clinical application. Nat Rev Urol. 2013;10:235–44. https://doi.org/10.1038/nrurol.2013.42.

    Article  CAS  PubMed  Google Scholar 

  31. Wieser G, Mansi R, Grosu AL, Schultze-Seemann W, Dumont-Walter RA, Meyer PT, et al. Positron emission tomography (PET) imaging of prostate cancer with a gastrin releasing peptide receptor antagonist–from mice to men. Theranostics. 2014;4:412–9. https://doi.org/10.7150/thno.7324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Niu G, Fan X, Lang L, Hou G, Chen L, et al. PET using a GRPR antagonist Ga-RM26 in healthy volunteers and prostate cancer patients. J Nucl Med. 2018;59:922–8. https://doi.org/10.2967/jnumed.117.198929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Touijer KA, Michaud L, Alvarez HAV, Gopalan A, Kossatz S, Gonen M, et al. Prospective study of the radiolabeled GRPR antagonist BAY86-7548 for positron emission tomography/computed tomography imaging of newly diagnosed prostate cancer. Eur Urol Oncol. 2019;2:166–73. https://doi.org/10.1016/j.euo.2018.08.011.

    Article  PubMed  Google Scholar 

  34. Epstein JI, Feng Z, Trock BJ, Pierorazio PM. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur Urol. 2012;61:1019–24. https://doi.org/10.1016/j.eururo.2012.01.050.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bittner N, Merrick GS, Butler WM, Bennett A, Galbreath RW. Incidence and pathological features of prostate cancer detected on transperineal template guided mapping biopsy after negative transrectal ultrasound guided biopsy. J Urol. 2013;190:509–14. https://doi.org/10.1016/j.juro.2013.02.021.

    Article  PubMed  Google Scholar 

  36. Walz J, Graefen M, Chun FKH, Erbersdobler A, Haese A, Steuber T, et al. High incidence of prostate cancer detected by saturation biopsy after previous negative biopsy series. Eur Urol. 2006;50:498–505.

    Article  Google Scholar 

  37. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, Prostate imaging reporting and data system version 2.1, et al. update of prostate imaging reporting and data system version 2. Eur Urol. 2019;2019(76):340–51. https://doi.org/10.1016/j.eururo.2019.02.033.

    Article  Google Scholar 

  38. Lv Z, Jiang H, Hu X, Yang C, Chand H, Tang C, et al. Efficacy and safety of periprostatic nerve block combined with perineal subcutaneous anaesthesia and intrarectal lidocaine gel in transrectal ultrasound guided transperineal prostate biopsy: a prospective randomised controlled trial. Prostate Cancer Prostatic Dis. 2020;23:74–80. https://doi.org/10.1038/s41391-019-0155-0.

    Article  CAS  PubMed  Google Scholar 

  39. Mai Z, Zhou Z, Yan W, Xiao Y, Zhou Y, Liang Z, et al. The transverse and vertical distribution of prostate cancer in biopsy and radical prostatectomy specimens. BMC Cancer. 2018;18:1205. https://doi.org/10.1186/s12885-018-5124-9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bjurlin MA, Carter HB, Schellhammer P, Cookson MS, Gomella LG, Troyer D, et al. Optimization of initial prostate biopsy in clinical practice: sampling, labeling and specimen processing. J Urol. 2013;189:2039–46. https://doi.org/10.1016/j.juro.2013.02.072.

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Leenders GJLH, van der Kwast TH, Grignon DJ, Evans AJ, Kristiansen G, Kweldam CF, et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am J Surg Pathol. 2020;44:e87-e99. https://doi.org/10.1097/PAS.0000000000001497.

  42. Klotz L, Vesprini D, Sethukavalan P, Jethava V, Zhang L, Jain S, et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol. 2015;33:272–7. https://doi.org/10.1200/JCO.2014.55.1192.

    Article  PubMed  Google Scholar 

  43. Tosoian JJ, Mamawala M, Epstein JI, Landis P, Wolf S, Trock BJ, et al. Intermediate and longer-term outcomes from a prospective active-surveillance program for favorable-risk prostate cancer. J Clin Oncol. 2015;33:3379–85. https://doi.org/10.1200/JCO.2015.62.5764.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Eder M, Schäfer M, Bauder-Wüst U, Haberkorn U, Eisenhut M, Kopka K. Preclinical evaluation of a bispecific low-molecular heterodimer targeting both PSMA and GRPR for improved PET imaging and therapy of prostate cancer. Prostate. 2014;74:659–68. https://doi.org/10.1002/pros.22784.

    Article  CAS  PubMed  Google Scholar 

  45. Kesch C, Vinsensia M, Radtke JP, Schlemmer HP, Heller M, Ellert E, et al. Intraindividual comparison of F-PSMA-1007 PET/CT, multiparametric MRI, and radical prostatectomy specimens in patients with primary prostate cancer: a retrospective, proof-of-concept study. J Nucl Med. 2017;58:1805–10. https://doi.org/10.2967/jnumed.116.189233.

    Article  CAS  PubMed  Google Scholar 

  46. Scheltema MJ, Chang JI, Stricker PD, van Leeuwen PJ, Nguyen QA, Ho B, et al. Diagnostic accuracy of Ga-prostate-specific membrane antigen (PSMA) positron-emission tomography (PET) and multiparametric (mp)MRI to detect intermediate-grade intra-prostatic prostate cancer using whole-mount pathology: impact of the addition of Ga-PSMA PET to mpMRI. BJU Int. 2019;124(Suppl 1):42–9. https://doi.org/10.1111/bju.14794.

    Article  CAS  PubMed  Google Scholar 

  47. Donato P, Roberts MJ, Morton A, Kyle S, Coughlin G, Esler R, et al. Improved specificity with Ga PSMA PET/CT to detect clinically significant lesions “invisible” on multiparametric MRI of the prostate: a single institution comparative analysis with radical prostatectomy histology. Eur J Nucl Med Mol Imaging. 2019;46:20–30. https://doi.org/10.1007/s00259-018-4160-7.

    Article  PubMed  Google Scholar 

  48. Hoffmann MA, Miederer M, Wieler HJ, Ruf C, Jakobs FM, Schreckenberger M. Diagnostic performance of Gallium-PSMA-11 PET/CT to detect significant prostate cancer and comparison with FEC PET/CT. Oncotarget. 2017;8:111073–83. https://doi.org/10.18632/oncotarget.22441.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rüschoff JH, Ferraro DA, Muehlematter UJ, Laudicella R, Hermanns T, Rodewald A-K, et al. What’s behind Ga-PSMA-11 uptake in primary prostate cancer PET? Investigation of histopathological parameters and immunohistochemical PSMA expression patterns. Eur J Nucl Med Mol Imaging. 2021;48:4042–53. https://doi.org/10.1007/s00259-021-05501-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lazzeri M, Chiti A. PSMA PET-CT: the winner takes it all. Eur J Nucl Med Mol Imaging. 2021;48:3760–1. https://doi.org/10.1007/s00259-021-05534-6.

    Article  PubMed  Google Scholar 

  51. Bodar YJL, Jansen BHE, van der Voorn JP, Zwezerijnen GJC, Meijer D, Nieuwenhuijzen JA, et al. Detection of prostate cancer with F-DCFPyL PET/CT compared to final histopathology of radical prostatectomy specimens: is PSMA-targeted biopsy feasible? The DeTeCT trial. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03490-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Donato P, Morton A, Yaxley J, Ranasinghe S, Teloken PE, Kyle S, et al. Ga-PSMA PET/CT better characterises localised prostate cancer after MRI and transperineal prostate biopsy: is Ga-PSMA PET/CT guided biopsy the future? Eur J Nucl Med Mol Imaging. 2020;47:1843–51. https://doi.org/10.1007/s00259-019-04620-0.

    Article  PubMed  Google Scholar 

  53. Sawicki LM, Kirchner J, Buddensieck C, Antke C, Ullrich T, Schimmöller L, et al. Prospective comparison of whole-body MRI and Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2019;46:1542–50. https://doi.org/10.1007/s00259-019-04308-5.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao J, Liu J, Sun G, Zhang M, Chen J, Shen P, et al. The prognostic value of the proportion and architectural patterns of intraductal carcinoma of the prostate in patients with de novo metastatic prostate cancer. J Urol. 2019;201:759–68. https://doi.org/10.1016/j.juro.2018.10.016.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank everyone who provided support for this study. We thank the support from the Key Research and Development Program of Hunan Province (2021SK2014), the National Natural Science Foundation of China (91859207), the National Natural Science Foundation of China (81800590, 81902858, 81902606), and the Natural Science Foundation of Hunan Province (2020JJ5882, 2020JJ5949, 2020JJ5891).

Funding

This investigation was sponsored by the Key Research and Development Program of Hunan Province (2021SK2014), the National Natural Science Foundation of China (91859207), the National Natural Science Foundation of China (81800590, 81902858, 81902606), and the Natural Science Foundation of Hunan Province (2020JJ5882, 2020JJ5949, 2020JJ5891).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuo Hu or Yi Cai.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the local ethic committee (201909253).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Disclaimer

The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Genitourinary

Key points

Question:Although several prostate biopsy strategies are known, the most effective and accurate approach to diagnose PCa, especially for clinically significant prostate cancer (csPCa), remains unestablished.

Pertinent findings: In this prospective and comparative effectiveness study involving 112 patients, the use of dual-tracer PET/CT (68 Ga-GRPR + 68 Ga-PSMA) was recommended to screen patients from unnecessary biopsy. Dual-tracer PET/CT-TB plus SB achieved a significantly higher PCa detection rate (77.36%) without misdiagnosis of csPCa when compared with the application outcomes of mpMRI-TB and mpMRI-TB + SB.

Implications for patient care: Dual-tracer PET/CT-TB plus SB may be a more effective and promising strategy for accurately diagnosing PCa than mpMRI-TB and mpMRI-TB + SB.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, DX., Li, J., Zhang, JW. et al. Dual-tracer PET/CT-targeted, mpMRI-targeted, systematic biopsy, and combined biopsy for the diagnosis of prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 49, 2821–2832 (2022). https://doi.org/10.1007/s00259-021-05636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05636-1

Keywords

Navigation