Skip to main content

Advertisement

Log in

11C-methionine PET imaging characteristics in children with diffuse intrinsic pontine gliomas and relationship to survival and H3 K27M mutation status

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to describe 11C-methionine (11C-MET) PET imaging characteristics in patients with paediatric diffuse intrinsic pontine glioma (DIPG) and correlate them with survival and H3 K27M mutation status.

Methods

We retrospectively analysed 98 children newly diagnosed with DIPG who underwent 11C-MET PET. PET imaging characteristics evaluated included uptake intensity, uniformity, metabolic tumour volume (MTV), and total lesion methionine uptake (TLMU). The maximum, mean, and peak of the tumour-to-background ratio (TBR), calculated as the corresponding standardised uptake values (SUV) divided by the mean reference value, were also recorded. The associations between the PET imaging characteristics and clinical outcomes in terms of progression-free survival (PFS) and overall survival (OS) and H3 K27M mutation status were assessed, respectively.

Results

In univariate analysis, imaging characteristics significantly associated with shorter PFS and OS included a higher uniformity grade, higher TBRs, larger MTV, and higher TLMU. In multivariate analysis, larger MTV at diagnosis, shorter symptom duration, and no treatment were significantly correlated with shorter PFS and OS. The PET imaging features were not correlated with H3 K27M mutation status.

Conclusion

Although several imaging features were significantly associated with PFS and OS, only MTV, indicating the size of the active tumour, was identified as a strong independent prognostic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author (L.A.), upon reasonable request.

References

  1. Jansen MH, Veldhuijzen van Zanten SE, Sanchez Aliaga E, Heymans MW, Warmuth-Metz M, Hargrave D, et al. Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. Neuro Oncol. 2015;17:160–6. https://doi.org/10.1093/neuonc/nou104.

    Article  PubMed  Google Scholar 

  2. Wagner S, Warmuth-Metz M, Emser A, Gnekow AK, Strater R, Rutkowski S, et al. Treatment options in childhood pontine gliomas. J Neurooncol. 2006;79:281–7. https://doi.org/10.1007/s11060-006-9133-1.

    Article  PubMed  Google Scholar 

  3. Gokce-Samar Z, Beuriat PA, Faure-Conter C, Carrie C, Chabaud S, Claude L, et al. Pre-radiation chemotherapy improves survival in pediatric diffuse intrinsic pontine gliomas. Childs Nerv Syst. 2016;32:1415–23. https://doi.org/10.1007/s00381-016-3153-8.

    Article  CAS  PubMed  Google Scholar 

  4. Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7:241–8. https://doi.org/10.1016/S1470-2045(06)70615-5.

    Article  PubMed  Google Scholar 

  5. Jansen MH, van Vuurden DG, Vandertop WP, Kaspers GJ. Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev. 2012;38:27–35. https://doi.org/10.1016/j.ctrv.2011.06.007.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman LM, van VeldhuijzenZanten SEM, Colditz N, Baugh J, Chaney B, Hoffmann M, et al. Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG Registries. J Clin Oncol. 2018;36:1963–72. https://doi.org/10.1200/JCO.2017.75.9308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hargrave D, Chuang N, Bouffet E. Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J Neurooncol. 2008;86:313–9. https://doi.org/10.1007/s11060-007-9473-5.

    Article  PubMed  Google Scholar 

  8. Liu AK, Brandon J, Foreman NK, Fenton LZ. Conventional MRI at presentation does not predict clinical response to radiation therapy in children with diffuse pontine glioma. Pediatr Radiol. 2009;39:1317–20. https://doi.org/10.1007/s00247-009-1368-5.

    Article  PubMed  Google Scholar 

  9. Poussaint TY, Vajapeyam S, Ricci KI, Panigrahy A, Kocak M, Kun LE, et al. Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol. 2016;18:725–34. https://doi.org/10.1093/neuonc/nov256.

    Article  CAS  PubMed  Google Scholar 

  10. Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol. 2011;13:904–9. https://doi.org/10.1093/neuonc/nor076.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Steffen-Smith EA, Shih JH, Hipp SJ, Bent R, Warren KE. Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma. J Neurooncol. 2011;105:365–73. https://doi.org/10.1007/s11060-011-0601-x.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lober RM, Cho YJ, Tang Y, Barnes PD, Edwards MS, Vogel H, et al. Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J Neurooncol. 2014;117:175–82. https://doi.org/10.1007/s11060-014-1375-8.

    Article  PubMed  Google Scholar 

  13. Leach JL, Roebker J, Schafer A, Baugh J, Chaney B, Fuller C, et al. MR imaging features of diffuse intrinsic pontine glioma and relationship to overall survival: report from the International DIPG Registry. Neuro Oncol. 2020;22:1647–57. https://doi.org/10.1093/neuonc/noaa140.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jaimes C, Vajapeyam S, Brown D, Kao PC, Ma C, Greenspan L, et al. MR imaging correlates for molecular and mutational analyses in children with diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol. 2020;41:874–81. https://doi.org/10.3174/ajnr.A6546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ishiwata K, Ido T, Abe Y, Matsuzawa T, Iwata R. Tumor uptake studies of S-adenosyl-L-[methyl-11C]methionine and L-[methyl-11C]methionine. Int J Rad Appl Instrum B. 1988;15:123–6. https://doi.org/10.1016/0883-2897(88)90077-3.

    Article  CAS  PubMed  Google Scholar 

  16. Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T. Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol. 2010;99:217–25. https://doi.org/10.1007/s11060-010-0117-9.

    Article  CAS  PubMed  Google Scholar 

  17. Utriainen M, Metsahonkala L, Salmi TT, Utriainen T, Kalimo H, Pihko H, et al. Metabolic characterisation of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer. 2002;95:1376–86. https://doi.org/10.1002/cncr.10798.

    Article  PubMed  Google Scholar 

  18. Sorensen J, Savitcheva II, Engler H, Langstrom B. 3 Utility of PET and 11C-methionine in the paediatric brain tumors. Clin Positron Imaging. 2000;3:157. https://doi.org/10.1016/s1095-0397(00)00069-8.

    Article  CAS  PubMed  Google Scholar 

  19. Pirotte BJ, Lubansu A, Massager N, Wikler D, Goldman S, Levivier M. Results of positron emission tomography guidance and reassessment of the utility of and indications for stereotactic biopsy in children with infiltrative brainstem tumors. J Neurosurg. 2007;107:392–9. https://doi.org/10.3171/PED-07/11/392.

    Article  PubMed  Google Scholar 

  20. Rosenfeld A, Etzl M, Bandy D, Carpenteri D, Gieseking A, Dvorchik I, et al. Use of positron emission tomography in the evaluation of diffuse intrinsic brainstem gliomas in children. J Pediatr Hematol Oncol. 2011;33:369–73. https://doi.org/10.1097/MPH.0b013e31820ad915.

    Article  PubMed  Google Scholar 

  21. Tinkle CL, Duncan EC, Doubrovin M, Han Y, Li Y, Kim H, et al. Evaluation of (11)C-methionine PET and anatomic MRI associations in diffuse intrinsic pontine glioma. J Nucl Med. 2019;60:312–9. https://doi.org/10.2967/jnumed.118.212514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol. 2012;124:439–47. https://doi.org/10.1007/s00401-012-0998-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31. https://doi.org/10.1038/nature10833.

    Article  CAS  PubMed  Google Scholar 

  24. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44:251–3. https://doi.org/10.1038/ng.1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aboian MS, Solomon DA, Felton E, Mabray MC, Villanueva-Meyer JE, Mueller S, et al. Imaging characteristics of pediatric diffuse midline gliomas with histone H3 K27M mutation. AJNR Am J Neuroradiol. 2017;38:795–800. https://doi.org/10.3174/ajnr.A5076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhuo Z, Qu L, Zhang P, Duan Y, Cheng D, Xu X, et al. Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics. Eur J Nucl Med Mol Imaging. 2021;48:4426–36. https://doi.org/10.1007/s00259-021-05455-4.

    Article  CAS  PubMed  Google Scholar 

  27. Chiang J, Diaz AK, Makepeace L, Li X, Han Y, Li Y, et al. Clinical, imaging, and molecular analysis of pediatric pontine tumors lacking characteristic imaging features of DIPG. Acta Neuropathol Commun. 2020;8:57. https://doi.org/10.1186/s40478-020-00930-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  29. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23:1231–51. https://doi.org/10.1093/neuonc/noab106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res. 2004;10:7163–70. https://doi.org/10.1158/1078-0432.CCR-04-0262.

    Article  CAS  PubMed  Google Scholar 

  31. Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46:540–57. https://doi.org/10.1007/s00259-018-4207-9.

    Article  CAS  PubMed  Google Scholar 

  32. Cooney TM, Cohen KJ, Guimaraes CV, Dhall G, Leach J, Massimino M, et al. Response assessment in diffuse intrinsic pontine glioma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol. 2020;21:e330–6. https://doi.org/10.1016/S1470-2045(20)30166-2.

    Article  PubMed  Google Scholar 

  33. Zukotynski KA, Fahey FH, Kocak M, Alavi A, Wong TZ, Treves ST, et al. Evaluation of 18F-FDG PET and MRI associations in pediatric diffuse intrinsic brain stem glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2011;52:188–95. https://doi.org/10.2967/jnumed.110.081463.

    Article  PubMed  Google Scholar 

  34. Zukotynski KA, Vajapeyam S, Fahey FH, Kocak M, Brown D, Ricci KI, et al. Correlation of (18)F-FDG PET and MRI apparent diffusion coefficient histogram metrics with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. J Nucl Med. 2017;58:1264–9. https://doi.org/10.2967/jnumed.116.185389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goda JS, Dutta D, Raut N, Juvekar SL, Purandare N, Rangarajan V, et al. Can multiparametric MRI and FDG-PET predict outcome in diffuse brainstem glioma? A report from a prospective phase-II study. Pediatr Neurosurg. 2013;49:274–81. https://doi.org/10.1159/000366167.

    Article  PubMed  Google Scholar 

  36. Morana G, Tortora D, Bottoni G, Puntoni M, Piatelli G, Garibotto F, et al. Correlation of multimodal (18)F-DOPA PET and conventional MRI with treatment response and survival in children with diffuse intrinsic pontine gliomas. Theranostics. 2020;10:11881–91. https://doi.org/10.7150/thno.50598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Piccardo A, Tortora D, Mascelli S, Severino M, Piatelli G, Consales A, et al. Advanced MR imaging and (18)F-DOPA PET characteristics of H3K27M-mutant and wild-type pediatric diffuse midline gliomas. Eur J Nucl Med Mol Imaging. 2019;46:1685–94. https://doi.org/10.1007/s00259-019-04333-4.

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi K, Hirata K, Yamaguchi S, Manabe O, Terasaka S, Kobayashi H, et al. Prognostic value of volume-based measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging. 2015;42:1071–80. https://doi.org/10.1007/s00259-015-3046-1.

    Article  CAS  PubMed  Google Scholar 

  39. Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44:1155–64. https://doi.org/10.1007/s00259-017-3618-3.

    Article  CAS  PubMed  Google Scholar 

  40. Rosen J, Stoffels G, Lohmann P, Bauer EK, Werner JM, Wollring M, et al. Prognostic value of pre-irradiation FET PET in patients with not completely resectable IDH-wildtype glioma and minimal or absent contrast enhancement. Sci Rep. 2021;11:20828. https://doi.org/10.1038/s41598-021-00193-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiang GC, Galla N, Ferraro R, Kovanlikaya I. The added prognostic value of metabolic tumor size on FDG-PET at first suspected recurrence of glioblastoma multiforme. J Neuroimaging. 2017;27:243–7. https://doi.org/10.1111/jon.12386.

    Article  PubMed  Google Scholar 

  42. Khatua S, Moore KR, Vats TS, Kestle JR. Diffuse intrinsic pontine glioma-current status and future strategies. Childs Nerv Syst. 2011;27:1391–7. https://doi.org/10.1007/s00381-011-1468-z.

    Article  PubMed  Google Scholar 

  43. Ueoka DI, Nogueira J, Campos JC, Maranhao Filho P, Ferman S, Lima MA. Brainstem gliomas–retrospective analysis of 86 patients. J Neurol Sci. 2009;281:20–3. https://doi.org/10.1016/j.jns.2009.03.009.

    Article  PubMed  Google Scholar 

  44. Lazow MA, Fuller C, DeWire M, Lane A, Bandopadhayay P, Bartels U, et al. Accuracy of central neuro-imaging review of DIPG compared with histopathology in the International DIPG Registry. Neuro Oncol. 2022;24:821–33. https://doi.org/10.1093/neuonc/noab245.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yongzhong Zhang and Di Fan for their efforts in radiopharmaceuticals synthesis; Wei Zhang, Qingsong Long, and Tong Wu for the image data acquisition; and Jian Pan for his assistance in picture modification and edition.

Funding

This work was supported by funds from the National Natural Science Foundation of China (81527805, 81971668), the National Natural Science Foundation of China (2018YFC1315201), and the Beijing Natural Science Foundation (81771143).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liwei Zhang or Lin Ai.

Ethics declarations

Ethical approval

For this retrospective analysis, ethical approval was obtained, and the informed consent requirement was waived by the Institutional Reviewing Board of Beijing Tiantan Hospital, Capital Medical University.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology—Brain

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, D., Qiao, Z. et al. 11C-methionine PET imaging characteristics in children with diffuse intrinsic pontine gliomas and relationship to survival and H3 K27M mutation status. Eur J Nucl Med Mol Imaging 50, 1709–1719 (2023). https://doi.org/10.1007/s00259-022-06105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-06105-z

Keywords

Navigation