Skip to main content

Advertisement

Log in

Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse.

Methods

In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis.

Results

The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD.

Discussion

Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes.

Conclusion

The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battle DE. Diagnostic and statistical manual of mental disorders (DSM). Codas. 2013;25:191–2.

    PubMed  Google Scholar 

  2. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kohno M, Link J, Dennis LE, McCready H, Huckans M, Hoffman WF, et al. Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol Biochem Behav. 2019;179:34–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype. Neurobiol Dis. 2013;54:239–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Friedman H, Newton C, Klein TW. Microbial infections, immunomodulation, and drugs of abuse. Clin Microbiol Rev. 2003;16:209–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Feldman DE, McPherson KL, Biesecker CL, Wiers CE, Manza P, Volkow ND, et al. Neuroimaging of inflammation in alcohol use disorder: a review. Sci China Inf Sci. 2020;63:170102.

    Article  Google Scholar 

  7. Crews FT, Walter TJ, Coleman LG, Vetreno RP. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berlin). 2017;234:1483–98.

    Article  CAS  Google Scholar 

  8. Stella N. Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia. 2010;58:1017–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bidlack JM. Detection and function of opioid receptors on cells from the immune system. Clin Diagn Lab Immunol. 2000;7:719–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chandler LJ, Harris RA, Crews FT. Ethanol tolerance and synaptic plasticity. Trends Pharmacol Sci. 1998;19:491–5.

    Article  PubMed  CAS  Google Scholar 

  11. Montesinos J, Pascual M, Pla A, Maldonado C, Rodriguez-Arias M, Minarro J, et al. TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment. Brain Behav Immun. 2015;45:233–44.

    Article  PubMed  CAS  Google Scholar 

  12. Agrawal RG, Hewetson A, George CM, Syapin PJ, Bergeson SE. Minocycline reduces ethanol drinking. Brain Behav Immun. 2011;25(Suppl 1):S165–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cabral GA. Drugs of abuse, immune modulation, and AIDS. J NeuroImmune Pharmacol. 2006;1:280–95.

    Article  PubMed  Google Scholar 

  14. Coller JK, Hutchinson MR. Implications of central immune signaling caused by drugs of abuse: mechanisms, mediators and new therapeutic approaches for prediction and treatment of drug dependence. Pharmacol Ther. 2012;134:219–45.

    Article  PubMed  CAS  Google Scholar 

  15. Tournier N, Pottier G, Caillé F, Coulon C, Goislard M, Jégo B, et al. Nalmefene alleviates the neuroimmune response to repeated binge-like ethanol exposure: a TSPO PET imaging study in adolescent rats. Addict Biol. 2020;26:e12962.

    PubMed  Google Scholar 

  16. Ray LA, Bujarski S, Shoptaw S, Roche DJ, Heinzerling K, Miotto K. Development of the neuroimmune modulator Ibudilast for the treatment of alcoholism: a randomized, placebo-controlled, human laboratory trial. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2017;42:1776–88.

    Article  CAS  Google Scholar 

  17. Ray LA, Roche DJO, Heinzerling K, Shoptaw S. Opportunities for the development of neuroimmune therapies in addiction. Int Rev Neurobiol. 2014;118:381–401.

    Article  PubMed  Google Scholar 

  18. Worley MJ, Swanson A-N, Heinzerling KG, Roache DJO, Shoptaw S. Corrigendum to “Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study” [Drug Alcohol Depend. 162 (2016) 245–250]. Drug Alcohol Depend. 2018;190:120.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Worley MJ, Heinzerling KG, Roche DJO, Shoptaw S. Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug Alcohol Depend. 2016;162:245–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Miyata H, Takahashi M, Murai Y, Tsuneyoshi K, Hayashi T, Meulien D, et al. Nalmefene in alcohol-dependent patients with a high drinking risk: randomized controlled trial. Psychiatry Clin Neurosci. 2019;73:697–706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sofuoglu M, Mooney M, Kosten T, Waters A, Hashimoto K. Minocycline attenuates subjective rewarding effects of dextroamphetamine in humans. Psychopharmacology. 2011;213:61–8.

    Article  PubMed  CAS  Google Scholar 

  22. Sofuoglu M, Waters AJ, Mooney M, O’Malley SS. Minocycline reduced craving for cigarettes but did not affect smoking or intravenous nicotine responses in humans. Pharmacol Biochem Behav. 2009;92:135–40.

    Article  PubMed  CAS  Google Scholar 

  23. Duailibi MS, Cordeiro Q, Brietzke E, Ribeiro M, LaRowe S, Berk M, et al. N-acetylcysteine in the treatment of craving in substance use disorders: systematic review and meta-analysis. Am J Addict. 2017;26:660–6.

    Article  PubMed  Google Scholar 

  24. Gatliff J, Campanella M. The 18 kDa translocator protein (TSPO): a new perspective in mitochondrial biology. Curr Mol Med. 2012;12:356–68.

    PubMed  CAS  Google Scholar 

  25. Lavisse S, Guillermier M, Hérard A-S, Petit F, Delahaye M, Van Camp N, et al. Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci. 2012;32:10809–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Scarf AM, Kassiou M. The translocator protein. J Nucl Med Off Publ Soc Nucl Med. 2011;52:677–80.

    CAS  Google Scholar 

  27. Chauveau F, Van Camp N, Dollé F, Kuhnast B, Hinnen F, Damont A, et al. Comparative evaluation of the translocator protein radioligands 11C-DPA-713, 18F-DPA-714, and 11C-PK11195 in a rat model of acute neuroinflammation. J Nucl Med Off Publ Soc Nucl Med. 2009;50:468–76.

    CAS  Google Scholar 

  28. Chauveau F, Boutin H, Van Camp N, Dollé F, Tavitian B. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35:2304–19.

    Article  PubMed  Google Scholar 

  29. Betlazar C, Harrison-Brown M, Middleton RJ, Banati R, Liu G-J. Cellular sources and regional variations in the expression of the neuroinflammatory marker translocator protein (TSPO) in the normal brain. Int J Mol Sci. 2018;19.

  30. Nutma E, Ceyzériat K, Amor S, Tsartsalis S, Millet P, Owen DR, Papadopoulos V, Tournier BB. Cellular sources of TSPO expression in healthy and diseased brain. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-020-05166-2.

  31. Hutchinson MR, Watkins LR. Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology. 2014;76:218–27.

    Article  PubMed  CAS  Google Scholar 

  32. Maeda J, Higuchi M, Inaji M, Ji B, Haneda E, Okauchi T, et al. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res. 2007;1157:100–11.

    Article  PubMed  CAS  Google Scholar 

  33. Tyler RE, Kim SW, Guo M, Jang YJ, Damadzic R, Stodden T, et al. Detecting neuroinflammation in the brain following chronic alcohol exposure in rats: a comparison between in vivo and in vitro TSPO radioligand binding. Eur J Neurosci. 2019;50:1831–42.

    PubMed  Google Scholar 

  34. Saba W, Goutal S, Auvity S, Kuhnast B, Coulon C, Kouyoumdjian V, et al. Imaging the neuroimmune response to alcohol exposure in adolescent baboons: a TSPO PET study using F-18-DPA-714. Addict Biol. 2018;23:1000–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kim SW, Wiers CE, Tyler R, Shokri-Kojori E, Jang YJ, Zehra A, et al. Influence of alcoholism and cholesterol on TSPO binding in brain: PET [C-11]PBR28 studies in humans and rodents. Neuropsychopharmacology. 2018;43:1832–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hillmer AT, Sandiego CM, Hannestad J, Angarita GA, Kumar A, McGovern EM, et al. In vivo imaging of translocator protein, a marker of activated microglia, in alcohol dependence. Mol Psychiatry. 2017;22:1759–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kalk NJ, Guo Q, Owen D, Cherian R, Erritzoe D, Gilmour A, et al. Decreased hippocampal translocator protein (18 kDa) expression in alcohol dependence: a [(11)C]PBR28 PET study. Transl Psychiatry. 2017;7:e996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Auvity S, Goutal S, Theze B, Chaves C, Hosten B, Kuhnast B, et al. Evaluation of TSPO PET imaging, a marker of glial activation, to study the neuroimmune footprints of morphine exposure and withdrawal. Drug Alcohol Depend. 2017;170:43–50.

    Article  PubMed  CAS  Google Scholar 

  39. Auvity S, Saba W, Goutal S, Leroy C, Buvat I, Cayla J, et al. Acute morphine exposure increases the brain distribution of [18F]DPA-714, a PET biomarker of glial activation in nonhuman primates. Int J Neuropsychopharmacol. 2017;20:67–71.

    PubMed  CAS  Google Scholar 

  40. Saba W, Peyronneau M, Goutal S, Damont A, Dolle F, Tournier N, et al. Inhalation of cigarette smoke decreases the binding of [18F]DPA-714 to 18 kDa translocator protein (TSPO) in several tissues: a PET study in baboons. Eur J Nucl Med Mol Imaging. 2012;39:S412–2.

  41. Brody AL, Hubert R, Enoki R, Garcia LY, Mamoun MS, Okita K, et al. Effect of cigarette smoking on a marker for neuroinflammation: a [C-11]DAA1106 positron emission tomography study. Neuropsychopharmacology. 2017;42:1630–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Brody AL, Gehlbach D, Garcia LY, Enoki R, Hoh C, Vera D, et al. Effect of overnight smoking abstinence on a marker for microglial activation: a [C-11]DAA1106 positron emission tomography study. Psychopharmacology (Berlin). 2018;235:3525–34.

    Article  CAS  Google Scholar 

  43. Hillmer AT, Matuskey D, Huang Y, Nabulsi N, Ropchan J, Carson RE, et al. Tobacco smoking in people is not associated with altered 18-kDa translocator protein levels: a PET study. J Nucl Med Off Publ Soc Nucl Med. 2020;61:1200–4.

    CAS  Google Scholar 

  44. Da Silva T, Hafizi S, Watts JJ, Weickert CS, Meyer JH, Houle S, et al. In vivo imaging of translocator protein in long-term cannabis users. JAMA Psychiatry. 2019;76(12):1305–13.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pubill D, Canudas AM, Pallàs M, Camins A, Camarasa J, Escubedo E. Different glial response to methamphetamine- and methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedeberg's Arch Pharmacol. 2003;367:490–9.

    Article  CAS  Google Scholar 

  46. Motbey CP, Clemens KJ, Apetz N, Winstock AR, Ramsey J, Li KM, et al. High levels of intravenous mephedrone (4-methylmethcathinone) self-administration in rats: neural consequences and comparison with methamphetamine. J Psychopharmacol. 2013;27:823–36.

    Article  PubMed  CAS  Google Scholar 

  47. Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci. 2008;28:5756–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rathitharan G, Truong J, Tong J, McCluskey T, Meyer JH, Mizrahi R, et al. Microglia imaging in methamphetamine use disorder: a positron emission tomography study with the 18 kDa translocator protein radioligand [F-18]FEPPA. Addict Biol. 2021;26:e12876.

    Article  PubMed  CAS  Google Scholar 

  49. Smith HR, Beveridge TJR, Nader SH, Nader MA, Porrino LJ. Regional elevations in microglial activation and cerebral glucose utilization in frontal white matter tracts of rhesus monkeys following prolonged cocaine self-administration. Brain Struct Funct. 2019;224:1417–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Javaid JI, Notorangelo MP, Pandey SC, Reddy PL, Pandey GN, Davis JM. Peripheral benzodiazepine receptors are decreased during cocaine withdrawal in humans. Biol Psychiatry. 1994;36:44–50.

    Article  PubMed  CAS  Google Scholar 

  51. Narendran R, Lopresti BJ, Mason NS, Deuitch L, Paris J, Himes ML, et al. Cocaine abuse in humans is not associated with increased microglial activation: an 18-kDa translocator protein positron emission tomography imaging study with [11C]PBR28. J Neurosci. 2014;34:9945–50.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Harris RA, Trudell JR, Mihic SJ. Ethanol’s molecular targets. Sci Signal. 2008;1:re7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the innate immune response in the actions of ethanol on the central nervous system. Alcohol Clin Exp Res. 2016;40:2260–70.

    Article  PubMed  CAS  Google Scholar 

  54. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci. 2010;30:8285–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav. 2019;177:34–60.

    Article  PubMed  CAS  Google Scholar 

  56. Pascual M, Montesinos J, Marcos M, Torres JL, Costa-Alba P, Garcia-Garcia F, et al. Gender differences in the inflammatory cytokine and chemokine profiles induced by binge ethanol drinking in adolescence. Addict Biol. 2017;22:1829–41.

    Article  PubMed  CAS  Google Scholar 

  57. Ponomarev I, Wang S, Zhang L, Harris RA, Mayfield RD. Gene coexpression networks in human brain identify epigenetic modifications in alcohol dependence. J Neurosci. 2012;32:1884–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. De Carvalho LM, Wiers CE, Sun H, Wang G-J, Volkow ND. Increased transcription of TSPO, HDAC2, and HDAC6 in the amygdala of males with alcohol use disorder. Brain Behav. 2020;11:e01961.

    PubMed  PubMed Central  Google Scholar 

  59. Wiers CE, Martins De Carvalho L, Hodgkinson CA, Schwandt M, Kim SW, Diazgranados N, et al. TSPO polymorphism in individuals with alcohol use disorder: association with cholesterol levels and withdrawal severity. Addict Biol. 2021;26:e12838.

    Article  PubMed  CAS  Google Scholar 

  60. Shah M, Choi S. Toll-like receptor-dependent negative effects of opioids: a battle between analgesia and hyperalgesia. Front Immunol. 2017;8:642.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Due MR, Piekarz AD, Wilson N, Feldman P, Ripsch MS, Chavez S, et al. Neuroexcitatory effects of morphine-3-glucuronide are dependent on toll-like receptor 4 signaling. J Neuroinflammation. 2012;9:200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Wang X, Loram LC, Ramos K, de Jesus AJ, Thomas J, Cheng K, et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A. 2012;109:6325–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Watkins LR, Hutchinson MR, Rice KC, Maier SF. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci. 2009;30:581–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liang X, Liu R, Chen C, Ji F, Li T. Opioid system modulates the immune function: a review. Transl Perioper Pain Med. 2016;1:5–13.

    PubMed  PubMed Central  Google Scholar 

  65. Mansvelder HD, McGehee DS. Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol. 2002;53:606–17.

    Article  PubMed  CAS  Google Scholar 

  66. Egea J, Buendia I, Parada E, Navarro E, León R, Lopez MG. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem Pharmacol. 2015;97:463–72.

    Article  PubMed  CAS  Google Scholar 

  67. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    Article  PubMed  CAS  Google Scholar 

  68. Hoover DB. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol Ther. 2017;179:1–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Adeluyi A, Guerin L, Fisher ML, Galloway A, Cole RD, Chan SSL, et al. Microglia morphology and proinflammatory signaling in the nucleus accumbens during nicotine withdrawal. Sci Adv. 2019;5:eaax7031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Zeineh N, Nagler R, Gabay M, Weizman A, Gavish M. Effects of cigarette smoke on TSPO-related mitochondrial processes. Cells. 2019;8.

  71. Cui Y, Liang Y, Ip MSM, Mak JCW. Cigarette smoke induces apoptosis via 18 kDa translocator protein in human bronchial epithelial cells. Life Sci. 2021;265:118862.

    Article  PubMed  CAS  Google Scholar 

  72. Maremanda KP, Sundar IK, Rahman I. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicol Appl Pharmacol. 2019;385:114788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Bunaes DF, Mustafa M, Mohamed HG, Lie SA, Leknes KN. The effect of smoking on inflammatory and bone remodeling markers in gingival crevicular fluid and subgingival microbiota following periodontal therapy. J Periodontal Res. 2017;52:713–24.

    Article  PubMed  CAS  Google Scholar 

  74. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F. CB2 receptors in the brain: role in central immune function. Br J Pharmacol. 2008;153:240–51.

    Article  PubMed  CAS  Google Scholar 

  75. Galiègue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P, et al. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem. 1995;232:54–61.

    Article  PubMed  Google Scholar 

  76. Van Sickle MD, Duncan M, Kingsley PJ, Mouihate A, Urbani P, Mackie K, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–32.

    Article  PubMed  Google Scholar 

  77. Kelly R, Joers V, Tansey MG, McKernan DP, Dowd E. Microglial phenotypes and their relationship to the cannabinoid system: therapeutic implications for Parkinson’s disease. Mol Basel Switz. 2020;25:453.

    CAS  Google Scholar 

  78. Antonazzo M, Botta M, Bengoetxea H, Ruiz-Ortega JA, Morera-Herreras T. Therapeutic potential of cannabinoids as neuroprotective agents for damaged cells conducing to movement disorders. Int Rev Neurobiol. 2019;146:229–57.

    Article  PubMed  CAS  Google Scholar 

  79. Fernandez-Ruiz J, Romero J, Ramos JA. Endocannabinoids and neurodegenerative disorders: Parkinson’s disease, Huntington’s chorea, Alzheimer’s disease, and others. Handb Exp Pharmacol. 2015;231:233–59.

    Article  PubMed  CAS  Google Scholar 

  80. Cutando L, Busquets-Garcia A, Puighermanal E, Gomis-González M, Delgado-García JM, Gruart A, et al. Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. J Clin Invest. 2013;123:2816–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, et al. The main molecular mechanisms underlying methamphetamine- induced neurotoxicity and implications for pharmacological treatment. Front Mol Neurosci. 2018;11:186.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cadet JL, Bisagno V, Milroy CM. Neuropathology of substance use disorders. Acta Neuropathol. 2014;127:91–107.

    Article  PubMed  CAS  Google Scholar 

  83. LaVoie MJ, Card JP, Hastings TG. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol. 2004;187:47–57.

    Article  PubMed  CAS  Google Scholar 

  84. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther. 2004;311:1–7.

    Article  PubMed  CAS  Google Scholar 

  85. Xu E, Liu J, Liu H, Wang X, Xiong H. Role of microglia in methamphetamine-induced neurotoxicity. Int J Physiol Pathophysiol Pharmacol. 2017;9:84–100.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Loftis JM, Choi D, Hoffman W, Huckans MS. Methamphetamine causes persistent immune dysregulation: a cross-species, translational report. Neurotox Res. 2011;20:59–68.

    Article  PubMed  CAS  Google Scholar 

  87. Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang L-C, et al. Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol Dis. 2014;67:107–18.

    Article  PubMed  CAS  Google Scholar 

  88. Gorelick DA, Gardner EL, Xi Z-X. Agents in development for the management of cocaine abuse. Drugs. 2004;64:1547–73.

    Article  PubMed  CAS  Google Scholar 

  89. Moreira FP, Jansen K, Mondin TC, Cardoso Tde A, Magalhaes PV, Kapczinski F, et al. Biological rhythms, metabolic syndrome and current depressive episode in a community sample. Psychoneuroendocrinology. 2016;72:34–9.

    Article  PubMed  Google Scholar 

  90. Brown KT, Levis SC, O’Neill CE, Northcutt AL, Fabisiak TJ, Watkins LR, et al. Innate immune signaling in the ventral tegmental area contributes to drug-primed reinstatement of cocaine seeking. Brain Behav Immun. 2018;67:130–8.

    Article  PubMed  CAS  Google Scholar 

  91. Cotto B, Li H, Tuma RF, Ward SJ, Langford D. Cocaine-mediated activation of microglia and microglial MeCP2 and BDNF production. Neurobiol Dis. 2018;117:28–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Little KY, Ramssen E, Welchko R, Volberg V, Roland CJ, Cassin B. Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res. 2009;168:173–80.

    Article  PubMed  CAS  Google Scholar 

  93. Moretti M, Belli G, Morini L, Monti MC, Osculati AMM, Visona SD. Drug abuse-related neuroinflammation in human postmortem brains: an immunohistochemical approach. J Neuropathol Exp Neurol. 2019;78:1059–65.

    Article  PubMed  CAS  Google Scholar 

  94. McConnell SEA, O’Banion MK, Cory-Slechta DA, Olschowka JA, Opanashuk LA. Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology. 2015;50:131–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Shaerzadeh F, Streit WJ, Heysieattalab S, Khoshbouei H. Methamphetamine neurotoxicity, microglia, and neuroinflammation. J Neuroinflammation. 2018;15:341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Vetreno RP, Crews FT. Binge ethanol exposure during adolescence leads to a persistent loss of neurogenesis in the dorsal and ventral hippocampus that is associated with impaired adult cognitive functioning. Front Neurosci. 2015;9:35.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Obernier JA, Bouldin TW, Crews FT. Binge ethanol exposure in adult rats causes necrotic cell death. Alcohol Clin Exp Res. 2002;26:547–57.

    Article  PubMed  CAS  Google Scholar 

  98. Adermark L, Bowers MS. Disentangling the role of astrocytes in alcohol use disorder. Alcohol Clin Exp Res. 2016;40:1802–16.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Miguel-Hidalgo JJ. Molecular neuropathology of astrocytes and oligodendrocytes in alcohol use disorders. Front Mol Neurosci. 2018;11:78.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bull C, Freitas KCC, Zou S, Poland RS, Syed WA, Urban DJ, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2014;39:2835–45.

    Article  CAS  Google Scholar 

  101. Stephenson DT, Schober DA, Smalstig EB, Mincy RE, Gehlert DR, Clemens JA. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci. 1995;15:5263–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Benavides J, Quarteronet D, Imbault F, Malgouris C, Uzan A, Renault C, et al. Labelling of “peripheral-type” benzodiazepine binding sites in the rat brain by using [3H]PK 11195, an isoquinoline carboxamide derivative: kinetic studies and autoradiographic localization. J Neurochem. 1983;41:1744–50.

    Article  PubMed  CAS  Google Scholar 

  103. Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, et al. Generalization of endothelial modelling of TSPO PET imaging: considerations on tracer affinities. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2019;39:874–85.

    Article  CAS  Google Scholar 

  104. Bowyer JF, Robinson B, Ali S, Schmued LC. Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synap N Y N. 2008;62:193–204.

    Article  CAS  Google Scholar 

  105. Auvity S, Tournier N. Impact of acute alcohol exposure on P-glycoprotein function at the blood-brain barrier assessed using 11 C-metoclopramide PET imaging. Clin Pharmacol Ther. 2019;105:812–3.

    Article  PubMed  Google Scholar 

  106. Sajja RK, Rahman S, Cucullo L. Drugs of abuse and blood-brain barrier endothelial dysfunction: a focus on the role of oxidative stress. J Cereb Blood Flow Metab. 2016;36:539–54.

    Article  PubMed  CAS  Google Scholar 

  107. Tapia-Rojas C, Torres AK, Quintanilla RA. Adolescence binge alcohol consumption induces hippocampal mitochondrial impairment that persists during the adulthood. Neuroscience. 2019;406:356–68.

    Article  PubMed  CAS  Google Scholar 

  108. Almansa I, Fernández A, García-Ruiz C, Muriach M, Barcia JM, Miranda M, et al. Brain mitochondrial alterations after chronic alcohol consumption. J Physiol Biochem. 2009;65:305–12.

    Article  PubMed  CAS  Google Scholar 

  109. Mira RG, Tapia-Rojas C, Pérez MJ, Jara C, Vergara EH, Quintanilla RA, et al. Alcohol impairs hippocampal function: from NMDA receptor synaptic transmission to mitochondrial function. Drug Alcohol Depend. 2019;205:107628.

    Article  PubMed  CAS  Google Scholar 

  110. Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, et al. Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron. 2017;96:1327–1341.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Northcutt AL, Hutchinson MR, Wang X, Baratta MV, Hiranita T, Cochran TA, et al. DAT isn’t all that: cocaine reward and reinforcement require toll-like receptor 4 signaling. Mol Psychiatry. 2015;20:1525–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lee J-W, Nam H, Yu S-W. Systematic analysis of translocator protein 18 kDa (TSPO) ligands on toll-like receptors-mediated pro-inflammatory responses in microglia and astrocytes. Exp Neurobiol. 2016;25:262–8.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nock NL, Minnes S, Alberts JL. Neurobiology of substance use in adolescents and potential therapeutic effects of exercise for prevention and treatment of substance use disorders. Birth Defects Res. 2017;109:1711–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropharmacology. 2014;76(Pt B):259–68.

    Article  PubMed  CAS  Google Scholar 

  115. Llorente-Berzal A, Puighermanal E, Burokas A, Ozaita A, Maldonado R, Marco EM, et al. Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption. PLoS One. 2013;8:e78386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Schwarz JM, Bilbo SD. Adolescent morphine exposure affects long-term microglial function and later-life relapse liability in a model of addiction. J Neurosci. 2013;33:961–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Pascual M, Pla A, Minarro J, Guerri C. Neuroimmune activation and myelin changes in adolescent rats exposed to high-dose alcohol and associated cognitive dysfunction: a review with reference to human adolescent drinking. Alcohol Alcohol. 2014;49:187–92.

    Article  PubMed  CAS  Google Scholar 

  118. Spear LP. Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci. 2018;19:197–214.

    Article  PubMed  CAS  Google Scholar 

  119. Tapia-Rojas C, Carvajal FJ, Mira RG, Arce C, Lerma-Cabrera JM, Orellana JA, et al. Adolescent binge alcohol exposure affects the brain function through mitochondrial impairment. Mol Neurobiol. 2018;55:4473–91.

    Article  PubMed  CAS  Google Scholar 

  120. McHugh RK, Votaw VR, Sugarman DE, Greenfield SF. Sex and gender differences in substance use disorders. Clin Psychol Rev. 2018;66:12–23.

    Article  PubMed  Google Scholar 

  121. Thomas DM, Kuhn DM. Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. J Neurochem. 2005;92:790–7.

    Article  PubMed  CAS  Google Scholar 

  122. Beckers L, Ory D, Geric I, Declercq L, Koole M, Kassiou M, et al. Increased expression of translocator protein (TSPO) marks pro-inflammatory microglia but does not predict neurodegeneration. Mol Imaging Biol. 2018;20:94–102.

    Article  PubMed  CAS  Google Scholar 

  123. Obernier JA, White AM, Swartzwelder HS, Crews FT. Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav. 2002;72:521–32.

    Article  PubMed  CAS  Google Scholar 

  124. Syapin PJ, Alkana RL. Chronic ethanol exposure increases peripheral-type benzodiazepine receptors in brain. Eur J Pharmacol. 1988;147:101–9.

    Article  PubMed  CAS  Google Scholar 

  125. Qin L, He J, Hanes RN, Pluzarev O, Hong J-S, Crews FT. Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation. 2008;5:10.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Niraula A, Sheridan JF, Godbout JP. Microglia priming with aging and stress. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2017;42:318–33.

    Article  Google Scholar 

  127. Neher JJ, Cunningham C. Priming microglia for innate immune memory in the brain. Trends Immunol. 2019;40:358–74.

    Article  PubMed  CAS  Google Scholar 

  128. Lajqi T, Stojiljkovic M, Williams DL, Hudalla H, Bauer M, Witte OW, et al. Memory-like responses of brain microglia are controlled by developmental state and pathogen dose. Front Immunol. 2020;11:546415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Batarseh A, Barlow KD, Martinez-Arguelles DB, Papadopoulos V. Functional characterization of the human translocator protein (18kDa) gene promoter in human breast cancer cell lines. Biochim Biophys Acta. 1819;2012:38–56.

    Google Scholar 

  130. Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309:H1453–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Krasnova IN, Justinova Z, Cadet JL. Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berlin). 2016;233:1945–62.

    Article  CAS  Google Scholar 

  132. Kitamura O, Takeichi T, Wang EL, Tokunaga I, Ishigami A, Kubo S. Microglial and astrocytic changes in the striatum of methamphetamine abusers. Leg Med Tokyo. 2010;12:57–62.

    Article  PubMed  CAS  Google Scholar 

  133. Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol. 2006;80:308–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Dickstein LP, Zoghbi SS, Fujimura Y, Imaizumi M, Zhang Y, Pike VW, et al. Comparison of 18F- and 11C-labeled aryloxyanilide analogs to measure translocator protein in human brain using positron emission tomography. Eur J Nucl Med Mol Imaging. 2011;38:352–7.

    Article  PubMed  CAS  Google Scholar 

  135. Fujita M, Kobayashi M, Ikawa M, Gunn RN, Rabiner EA, Owen DR, et al. Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176-based on recent publications that measured specific-to-non-displaceable ratios. EJNMMI Res. 2017;7:84.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Rupprecht R, Papadopoulos V, Rammes G, Baghai TC, Fan J, Akula N, et al. Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov. 2010;9:971–88.

    Article  PubMed  CAS  Google Scholar 

  137. Felger JC. Imaging the role of inflammation in mood and anxiety-related disorders. Curr Neuropharmacol. 2018;16:533–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Meyer JH, Cervenka S, Kim M-J, Kreisl WC, Henter ID, Innis RB. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry. 2020;7:1064–74.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Richards EM, Zanotti-Fregonara P, Fujita M, Newman L, Farmer C, Ballard ED, et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 2018;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Tirado Muñoz J, Farré A, Mestre-Pintó J, Szerman N, Torrens M. Dual diagnosis in depression: treatment recommendations. Adicciones. 2018;30:66–76.

    Article  PubMed  Google Scholar 

  141. De Picker LJ, Haarman BCM. Applicability, potential and limitations of TSPO PET imaging as a clinical immunopsychiatry biomarker. Eur J Nucl Med Mol Imaging. 2021.

  142. Attwells S, Setiawan E, Wilson AA, Rusjan PM, Mizrahi R, Miler L, et al. Inflammation in the Neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry. 2017;74:833–40.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bhatt S, Hillmer AT, Girgenti MJ, Rusowicz A, Kapinos M, Nabulsi N, et al. PTSD is associated with neuroimmune suppression: evidence from PET imaging and postmortem transcriptomic studies. Nat Commun. 2020;11:2360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Spanagel R. Animal models of addiction. Dialogues Clin Neurosci. 2017;19:247–58.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was performed on a platform member of the France Life Imaging network (grant ANR-11-INBS-0006).

Author information

Authors and Affiliations

Authors

Contributions

Both authors conceived, performed the literature search and analyses, and wrote the review. Both authors approved the final version of the review.

Corresponding author

Correspondence to Wadad Saba.

Ethics declarations

Ethics approval

No additional experiments have been performed as part of this review. This article does not contain any studies with human participants performed by any of the authors. Previous published animal studies performed by both authors and cited in this review were in accordance with the recommendations of the European Community (2010/63/UE and the French National Committees (law 2013–118) for the care and use of laboratory animals. The experimental protocol was approved by a local ethics committee for animal use (CETEA) and by the French ministry of agriculture.

Informed consent

Not applicable, this article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Translational research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroy, C., Saba, W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 49, 186–200 (2021). https://doi.org/10.1007/s00259-021-05408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05408-x

Keywords

Navigation