Skip to main content
Log in

Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Activation of the innate immune system plays a significant role in pathologies of the central nervous system (CNS). In order to follow disease progression and evaluate effectiveness of potential treatments involved in neuroinflammation, it is important to track neuroinflammatory markers in vivo longitudinally. The translocator protein (TSPO) is used as a target to image neuroinflammation as its expression is upregulated in reactive glial cells during CNS pathologies. However, it remains unclear in which microglial phenotypes TSPO levels are upregulated, as microglia can display a plethora of activation states that can be protective or detrimental to the CNS.

Procedures

We assessed the levels of TSPO transcripts in cultured microglia that were polarized into pro- and anti-inflammatory states in vitro and in the brain of mice in which an anti-inflammatory environment was induced in vivo. In addition, we used a mouse model of peroxisomal multifunctional protein-2 (MFP2) deficiency that exhibits widespread neuroinflammation despite no neuronal loss and monitored TSPO expression by immunohistochemistry and by imaging using the TSPO radiotracer [18F]DPA-714.

Results

TSPO expression was selectively increased in so-called classically activated or M1 microglia but not in alternatively activated or M2 microglia in vitro. In agreement, TSPO transcript levels were not induced in an anti-inflammatory brain environment. We found that both transcript and protein levels of TSPO are significantly increased in the brain of Mfp2 −/− compared to those of the control mice and TSPO immunoreactivity colocalized predominantly with microglia in Mfp2 −/− brain. In vitro and ex vivo autoradiography in Mfp2 −/− mice using the TSPO radiotracer [18F]DPA-714 confirmed increased expression of TSPO. These data demonstrate that TSPO imaging reveals microgliosis in non-neurodegenerative brain pathologies.

Conclusions

We show that induced TSPO expression marks a pro-inflammatory brain environment that is not necessarily accompanied by neuronal loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  CAS  PubMed  Google Scholar 

  2. Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH (2013) Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493

    Article  CAS  PubMed  Google Scholar 

  3. Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  Google Scholar 

  4. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  5. Chen MK, Guilarte TR (2008) Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 118:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cosenza-Nashat M, Zhao ML, Suh HS et al (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328

    Article  CAS  PubMed  Google Scholar 

  7. Fan J, Campioli E, Midzak A et al (2015) Conditional steroidogenic cell-targeted deletion of TSPO unveils a crucial role in viability and hormone-dependent steroid formation. Proc Natl Acad Sci U S A 112:7261–7266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lacapere JJ, Papadopoulos V (2003) Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis. Steroids 68:569–585

    Article  CAS  PubMed  Google Scholar 

  9. Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988

    Article  CAS  PubMed  Google Scholar 

  10. Ory D, Celen S, Verbruggen A, Bormans G (2014) PET radioligands for in vivo visualization of neuroinflammation. Curr Pharm Des 20:5897–5913

    Article  CAS  PubMed  Google Scholar 

  11. Lavisse S, Guillermier M, Herard AS et al (2012) Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 32:10809–10818

    Article  CAS  PubMed  Google Scholar 

  12. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432

    Article  CAS  PubMed  Google Scholar 

  13. Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    Article  CAS  PubMed  Google Scholar 

  14. Wolf SA, Boddeke HW, Kettenmann H (2016) Microglia in physiology and disease. Annu Rev Physiol 79:619–643

    Article  PubMed  Google Scholar 

  15. Huyghe S, Schmalbruch H, Hulshagen L et al (2006) Peroxisomal multifunctional protein-2 deficiency causes motor deficits and glial lesions in the adult central nervous system. Am J Pathol 168:1321–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verheijden S, Bottelbergs A, Krysko O et al (2013) Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation. Neurobiol Dis 58:258–269

    Article  CAS  PubMed  Google Scholar 

  17. Verheijden S, Beckers L, Casazza A et al (2015) Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal beta-oxidation deficiency. Glia 63:1606–1620

    Article  PubMed  Google Scholar 

  18. Baes M, Huyghe S, Carmeliet P et al (2000) Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 275:16329–16336

    Article  CAS  PubMed  Google Scholar 

  19. Casteels C, Vermaelen P, Nuyts J et al (2006) Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 47:1858–1866

    PubMed  Google Scholar 

  20. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39:3–18

    Article  CAS  PubMed  Google Scholar 

  21. Mantovani A, Biswas SK, Galdiero MR et al (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185

    Article  CAS  PubMed  Google Scholar 

  22. Cherry JD, Olschowka JA, O'Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98

    Article  PubMed  PubMed Central  Google Scholar 

  23. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic stress. Br J Pharmacol 173:649–665

    Article  CAS  PubMed  Google Scholar 

  24. Ory D, Planas A, Dresselaers T et al (2015) PET imaging of TSPO in a rat model of local neuroinflammation induced by intracerebral injection of lipopolysaccharide. Nucl Med Biol 42:753–761

    Article  CAS  PubMed  Google Scholar 

  25. Ory D, Postnov A, Koole M et al (2016) Quantification of TSPO overexpression in a rat model of local neuroinflammation induced by intracerebral injection of LPS by the use of [(18)F]DPA-714 PET. Eur J Nucl Med Mol Imaging 43:163–172

    Article  CAS  PubMed  Google Scholar 

  26. Scholz R, Sobotka M, Caramoy A (2015) Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration. J Neuroinfl 12:209

    Article  Google Scholar 

  27. Pepe G, Calderazzi G, de Maglie M et al (2014) Heterogeneous induction of microglia M2a phenotpe by central administration of interleukin-4. J Neuroinfl 11:211

    Article  Google Scholar 

  28. Girard S, Brough D, Lopez-Castejon G et al (2013) Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia 61:813–824

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rojas S, Martin A, Arranz MJ et al (2007) Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. J Cereb Blood Flow Metab 27:1975–1986

    Article  CAS  PubMed  Google Scholar 

  30. Ji B, Maeda J, Sawada M et al (2008) Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer’s and other CNS pathologies. J Neurosci 28:12255–12267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Corcia P, Tauber C, Vercoullie J et al (2012) Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One 7:e52941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kreisl WC, Lyoo CH, McGwier M et al (2013) In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136:2228–2238

    Article  PubMed  PubMed Central  Google Scholar 

  33. Harberts E, Datta D, Chen S et al (2013) Translocator protein 18 kDa (TSPO) expression in multiple sclerosis patients. J NeuroImmune Pharmacol 8:51–57

    Article  PubMed  Google Scholar 

  34. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991

    Article  CAS  PubMed  Google Scholar 

  35. Farfara D, Lifshitz V, Frenkel D (2008) Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer’s disease. J Cell Mol Med 12:762–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liao B, Zhao W, Beers DR et al (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huyghe S, Schmalbruch H, De Gendt K et al (2006) Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in Sertoli cells and male fertility in mice. Endocrinology 147:2228–2236

    Article  CAS  PubMed  Google Scholar 

  38. Politis M, Su P, Piccini P (2012) Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 3:96

    Article  PubMed  PubMed Central  Google Scholar 

  39. Owen DR, Yeo AJ, Gunn RN et al (2012) An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 32:1–5

    Article  CAS  PubMed  Google Scholar 

  40. Ory D, Celen S, Gijsbers R et al (2016) Preclinical evaluation of a P2X7 receptor-selective radiotracer: PET studies in a rat model with local overexpression of the human P2X7 receptor and in nonhuman primates. J Nucl Med 57:1436–1441

    Article  CAS  PubMed  Google Scholar 

  41. Territo PR, Meyer JA, Peters JS et al (2016) Characterization of [11C]-GSK1482160 for targeting the P2X7 receptor as a biomarker for neuroinflammation. J Nucl Med 58:458–465

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Benno Das, Lies Pauwels, Julie Cornelis, and Ann Bouché for their excellent technical assistance. This work was funded by grants from the Fonds Wetenschappelijk Onderzoek Vlaanderen (G.0675.12 and G.0A15.13), KU Leuven (OT12/78), European Union’s Seventh Framework Programme [FP7/2007-2013], INMiND (grant agreement no. 278850), ERA-NET Neuron (Micromet) and Programme financing KU Leuven IMIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Baes.

Ethics declarations

All animal experiments were performed in accordance with the “Guidelines for Care and Use of Experimental Animals” and fully approved by the Research Ethical committee of the KU Leuven (#190/2012).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Lien Beckers and Dieter Ory are equal first authors

Guy Bormans and Myriam Baes are equal last authors

Electronic supplementary material

ESM 1

(PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckers, L., Ory, D., Geric, I. et al. Increased Expression of Translocator Protein (TSPO) Marks Pro-inflammatory Microglia but Does Not Predict Neurodegeneration. Mol Imaging Biol 20, 94–102 (2018). https://doi.org/10.1007/s11307-017-1099-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1099-1

Key words

Navigation