Skip to main content

Advertisement

Log in

Magnetic resonance cinematography of the fingers: a 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To study the feasibility of magnetic resonance cinematography of the fingers (MRCF) with comparison of image quality of different protocols for depicting the finger anatomy during motion.

Materials and methods

MRCF was performed during a full flexion and extension movement in 14 healthy volunteers using a finger-gating device. Three real-time sequences (frame rates 17–59 images/min) and one proton density (PD) sequence (3 images/min) were acquired during incremental and continuous motion. Analyses were performed independently by three readers. Qualitative image analysis included Likert-scale grading from 0 (useless) to 5 (excellent) and specific visual analog scale (VAS) grading from 0 (insufficient) to 100 (excellent). Signal-to-noise calculation was performed. Overall percentage agreement and mean absolute disagreement were calculated.

Results

Within the real-time sequences a high frame-rate true fast imaging with steady-state free precession (TRUFI) yielded the best image quality with Likert and overall VAS scores of 3.0 ± 0.2 and 60.4 ± 25.3, respectively. The best sequence regarding image quality was an incremental PD with mean values of 4.8 ± 0.2 and 91.2 ± 9.4, respectively. Overall percentage agreement and mean absolute disagreement were 47.9 and 0.7, respectively. No statistically significant SNR differences were found between continuous and incremental motion for the real-time protocols.

Conclusion

MRCF is feasible with appropriate image quality during continuous motion using a finger-gating device. Almost perfect image quality is achievable with incremental PD imaging, which represents a compromise for MRCF with the drawback of prolonged scanning time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shellock FG, Mink JH, Deutsch A, Pressman BD. Kinematic magnetic resonance imaging of the joints: techniques and clinical applications. Magn Reson Q. 1991;7(2):104–35.

    CAS  PubMed  Google Scholar 

  2. Quick HH, Ladd ME, Hoevel M, Bosk S, Debatin JF, Laub G, et al. Real-time MRI of joint movement with trueFISP. J Magn Reson Imaging. 2002;15(6):710–5.

    Article  PubMed  Google Scholar 

  3. Shellock FG, Mink JH, Deutsch AL, Foo TK, Sullenberger P. Patellofemoral joint: identification of abnormalities with active-movement, “unloaded” versus “loaded” kinematic MR imaging techniques. Radiology. 1993;188(2):575–8.

    Article  CAS  PubMed  Google Scholar 

  4. Muhle C, Brinkmann G, Brossmann J, Wesner F, Heller M. Kinematic MR imaging of the ankle—initial results with ultra-fast sequence imaging. Acta Radiol. 1997;38(5):885–9.

    Article  CAS  PubMed  Google Scholar 

  5. Boutin RD, Buonocore MH, Immerman I, Ashwell Z, Sonico GJ, Szabo RM, et al. Real-time magnetic resonance imaging (MRI) during active wrist motion—initial observations. PLoS One. 2013;8(12):e84004.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nordmeyer-Massner JA, Pruessmann KP, Wyss M, Manoliu A, Hodler J, Andreisek G, et al. MR imaging of healthy knees in varying degrees of flexion using a stretchable coil array provides comparable image quality compared to a standard knee coil array. Eur J Radiol. 2016;85(3):518–23.

    Article  PubMed  Google Scholar 

  7. Tempelaere C, Pierrart J, Lefevre-Colau MM, Vuillemin V, Cuenod CA, Hansen U, et al. Dynamic three-dimensional shoulder MRI during active motion for investigation of rotator cuff diseases. PLoS One. 2016;11(7):e0158563.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bayer T, Schweizer A, Muller-Gerbl M, Bongartz G. Proximal interphalangeal joint volar plate configuration in the crimp grip position. J Hand Surg Am. 2012;37(5):899–905.

    Article  PubMed  Google Scholar 

  9. Bayer T, Adler W, Schweizer A, Schoffl I, Uder M, Janka R. Evaluation of finger A3 pulley rupture in the crimp grip position-a magnetic resonance imaging cadaver study. Skelet Radiol. 2015;44(9):1279–85.

    Article  Google Scholar 

  10. Klauser A, Frauscher F, Bodner G, Halpern EJ, Schocke MF, Springer P, et al. Finger pulley injuries in extreme rock climbers: depiction with dynamic US. Radiology. 2002;222(3):755–61.

    Article  PubMed  Google Scholar 

  11. Saito S, Suzuki Y. Biomechanics of the volar plate of the proximal interphalangeal joint: a dynamic ultrasonographic study. J Hand Surg Am. 2011;36(2):265–71.

    Article  PubMed  Google Scholar 

  12. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF. MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology. 2001;219(1):264–9.

    Article  CAS  PubMed  Google Scholar 

  13. Abolmaali ND, Schmitt J, Schwarz W, Toll DE, Hinterwimmer S, Vogl TJ. Visualization of the articular disk of the temporomandibular joint in near-real-time MRI: feasibility study. Eur Radiol. 2004;14(10):1889–94.

    Article  PubMed  Google Scholar 

  14. Morales H, Cornelius R. Imaging approach to Temporomandibular joint disorders. Clin Neuroradiol. 2016;26(1):5–22.

    Article  CAS  PubMed  Google Scholar 

  15. Tomas X, Pomes J, Berenguer J, Quinto L, Nicolau C, Mercader JM, et al. MR imaging of temporomandibular joint dysfunction: a pictorial review. Radiographics. 2006;26(3):765–81.

    Article  PubMed  Google Scholar 

  16. Tomas X, Pomes J, Berenguer J, Mercader JM, Pons F, Donoso L. Temporomandibular joint soft-tissue pathology, II: nondisc abnormalities. Semin Ultrasound CT MR. 2007;28(3):205–12.

    Article  PubMed  Google Scholar 

  17. Lasalarie JC, Serfaty JM, Carre C, Messika-Zeitoun D, Jeannot C, Schouman-Claeys E, et al. Accuracy of contrast-enhanced cine-MR sequences in the assessment of left ventricular function: comparison with precontrast cine-MR sequences. Results of a bicentric study. Eur Radiol. 2007;17(11):2838–44.

    Article  PubMed  Google Scholar 

  18. Grothues F, Boenigk H, Graessner J, Kanowski M, Klein HU. Balanced steady-state free precession vs segmented fast low-angle shot for the evaluation of ventricular volumes, mass, and function at 3 Tesla. J Magn Reson Imaging. 2007;26(2):392–400.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bayer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

(M4V 1383 kb)

(M4V 5917 kb)

(M4V 9296 kb)

(M4V 2081 kb)

(M4V 1024 kb)

(M4V 2588 kb)

(M4V 2305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, T., Adler, W., Janka, R. et al. Magnetic resonance cinematography of the fingers: a 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols. Skeletal Radiol 46, 1721–1728 (2017). https://doi.org/10.1007/s00256-017-2742-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2742-2

Keywords

Navigation