Skip to main content
Log in

Evaluation of finger A3 pulley rupture in the crimp grip position—a magnetic resonance imaging cadaver study

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

The correct diagnosis of an A3 pulley rupture is challenging for musculoskeletal radiologists. An A3 pulley rupture should in theory influence the shape of the proximal interphalangeal joint volar plate (VP) and the amount of bowstringing at level of the VP during finger flexion. The purpose of this study was to perform MRI with metric analysis of the VP configuration and VP bowstringing in cadaver fingers in the crimp grip position and to determine cut points for A3 pulley rupture.

Materials and methods

MRI in the crimp grip position was performed in 21 cadaver fingers with artificially created flexor tendon pulley tears (fingers with A3 pulley rupture n = 16, fingers without A3 pulley rupture n = 5). The distances of the translation of the VP relative to the middle phalanx base, the distances between the flexor tendons and the VP body, and the distances between the flexor tendon and bone (TB) were measured.

Results

Statistical analysis showed significantly lower VP translation distances and significantly higher VP tendon distances if the A3 pulley was ruptured. A2 TB and A4 TB distances did not differ significantly in specimens with and without A3 pulley rupture. The optimal cut points for A3 pulley rupture were a VP translation distance <2.8 mm and a VP tendon distance >1.4 mm.

Conclusion

Reduction of the VP translation distance and augmentation of the VP tendon distance are suitable indirect signs of A3 pulley rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schöffl V, Schöffl I. Injuries to the finger flexor pulley system in rock climbers–current concepts. J Hand Surg. 2006;31(4):647–54.

  2. Schöffl V, Jüngert J. Closed flexor pulley injuries in non-climbing activities. J Hand Surg. 2006;31(5):806–10.

    Article  Google Scholar 

  3. Schöffl V, Hochholzer T, Winkelmann HP, Strecker W. Pulley injuries in rock climbers. Wilderness Environ Med. 2003;14(2):94–100.

    Article  PubMed  Google Scholar 

  4. Gabl M, Rangger C, Lutz M, Fink C, Rudisch A, Pechlaner S. Disruption of the finger flexor pulley system in elite rock climbers. Am J Sports Med. 1998;26(5):651–5.

    CAS  PubMed  Google Scholar 

  5. Vigouroux L, Quaine F, Paclet F, Colloud F, Moutet F. Middle and ring fingers are more exposed to pulley rupture than index and little during sport-climbing: a biomechanical explanation. Clin Biomech (Bristol, Avon). 2008;23(5):562–70.

    Article  Google Scholar 

  6. Schweizer A. Biomechanical properties of the crimp grip position in rock climbers. J Biomech. 2001;34(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  7. Schoffl I, Oppelt K, Jungert J, Schweizer A, Neuhuber W, Schoffl V. The influence of the crimp and slope grip position on the finger pulley system. J Biomech. 2009;42(13):2183–7.

    Article  CAS  PubMed  Google Scholar 

  8. Doyle JR, Blythe W. The finger tendon flexor sheath and pulleys: anatomy and reconstruction. AAOS symposium of tendon surgery in the hand. St.Louis: Mosby; 1975. pp. 81–7.

    Google Scholar 

  9. Doyle JR. Anatomy of the finger flexor tendon sheath and pulley system. J Hand Surg. 1988;13(4):473–84.

    Article  CAS  Google Scholar 

  10. Doyle JR. Palmar and digital flexor tendon pulleys. Clin Orthop. 2001;383:84–96.

    Article  PubMed  Google Scholar 

  11. Goodman HJ, Choueka J. Biomechanics of the flexor tendons. Hand Clin. 2005;21(2):129–49.

    Article  PubMed  Google Scholar 

  12. Klauser A, Frauscher F, Bodner G, Halpern EJ, Schocke MF, Springer P, et al. Finger pulley injuries in extreme rock climbers: depiction with dynamic US. Radiology. 2002;222(3):755–61.

    Article  PubMed  Google Scholar 

  13. Martinoli C, Bianchi S, Nebiolo M, Derchi LE, Garcia JF. Sonographic evaluation of digital annular pulley tears. Skeletal Radiol. 2000;29(7):387–91.

    Article  CAS  PubMed  Google Scholar 

  14. Martinoli C, Bianchi S, Cotten A. Imaging of rock climbing injuries. Semin Musculoskelet Radiol. 2005;9(4):334–45.

    Article  PubMed  Google Scholar 

  15. Watanabe H, Hashizume H, Inoue H, Ogura T. Collagen framework of the volar plate of human proximal interphalangeal joint. Acta Med Okayama. 1994;48(2):101–8.

    CAS  PubMed  Google Scholar 

  16. Williams EH, McCarthy E, Bickel KD. The histologic anatomy of the volar plate. J Hand Surg [Am]. 1998;23(5):805–10.

    Article  CAS  Google Scholar 

  17. Zhao CF, Amadio PC, Berglund L, An KN. The A3 pulley. J Hand Surg. 2000;25(2):270–6.

    Article  CAS  Google Scholar 

  18. Tang JB, Xie RG. Effect of A3 pulley and adjacent sheath integrity on tendon excursion and bowstringing. J Hand Surg. 2001;26(5):855–61.

    Article  CAS  Google Scholar 

  19. Schöffl VR, Schoffl I. Finger pain in rock climbers: reaching the right differential diagnosis and therapy. J Sports Med Phys Fitness. 2007;47(1):70–8.

    PubMed  Google Scholar 

  20. Gabl M, Reinhart C, Lutz M, Bodner G, Angermann P, Pechlaner S. The use of a graft from the second extensor compartment to reconstruct the A2 flexor pulley in the long finger. J Hand Surg (Br). 2000;25(1):98–101.

    Article  CAS  Google Scholar 

  21. Bowers WH, Wolf Jr JW, Nehil JL, Bittinger S. The proximal interphalangeal joint volar plate. I. An anatomical and biomechanical study. J Hand Surg. 1980;5(1):79–88.

    Article  CAS  Google Scholar 

  22. Medicine ACoS. ACSM’S guidlines for exercise testing and prescription. 7 ed: Lippincott Williams & Wilkins; 2005.

  23. Bayer T, Fries S, Schweizer A, Schoffl I, Janka R, Bongartz G. Stress examination of flexor tendon pulley rupture in the crimp grip position: a 1.5-Tesla MRI cadaver study. Skeletal Radiol. 2014.

  24. Hauger O, Chung CB, Lektrakul N, Botte MJ, Trudell D, Boutin RD, et al. Pulley system in the fingers: normal anatomy and simulated lesions in cadavers at MR imaging, CT, and US with and without contrast material distention of the tendon sheath. Radiology. 2000;217(1):201–12.

    Article  CAS  PubMed  Google Scholar 

  25. Leeflang S, Coert JH. The role of proximal pulleys in preventing tendon bowstringing: pulley rupture and tendon bowstringing. J Plast Reconstr Aesthet Surg: JPRAS. 2014;67(6):822–7.

    Article  CAS  PubMed  Google Scholar 

  26. Saito S, Suzuki Y. Biomechanics of the volar plate of the proximal interphalangeal joint: a dynamic ultrasonographic study. J Hand Surg [Am]. 2011;36(2):265–71.

    Article  Google Scholar 

  27. Bayer T, Schweizer A, Muller-Gerbl M, Bongartz G. Proximal interphalangeal joint volar plate configuration in the crimp grip position. J Hand Surg [Am]. 2012;37(5):899–905.

    Article  Google Scholar 

  28. Schoffl I, Oppelt K, Jungert J, Schweizer A, Bayer T, Neuhuber W, et al. The influence of concentric and eccentric loading on the finger pulley system. J Biomech. 2009;42(13):2124–8.

    Article  CAS  PubMed  Google Scholar 

  29. Schweizer A, Frank O, Ochsner PE, Jacob HA. Friction between human finger flexor tendons and pulleys at high loads. J Biomech. 2003;36(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  30. Lin GT, Cooney WP, Amadio PC, An KN. Mechanical properties of human pulleys. J Hand Surg (Br). 1990;15(4):429–34.

    Article  CAS  Google Scholar 

  31. Bollen SR. Soft tissue injury in extreme rock climbers. Br J Sports Med. 1988;22(4):145–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Tropet Y, Menez D, Balmat P, Pem R, Vichard P. Closed traumatic rupture of the ring finger flexor tendon pulley. J Hand Surg. 1990;15(5):745–7.

    Article  CAS  Google Scholar 

  33. Schöffl V, Einwag F, Strecker W, Schöffl I. Strength measurement after conservatively treated pulley ruptures in climbers. Med Sci Sports Exerc. 2006;38(4):637–43.

    Article  PubMed  Google Scholar 

  34. Schoffl V, Kupper T, Hartmann J, Schoffl I. Surgical repair of multiple pulley injuries—evaluation of a new combined pulley repair. J Hand Surg [Am]. 2012;37(2):224–30.

    Article  CAS  Google Scholar 

  35. Arora R, Fritz D, Zimmermann R, Lutz M, Kamelger F, Klauser AS, et al. Reconstruction of the digital flexor pulley system: a retrospective comparison of two methods of treatment. J Hand Surg (Br). 2007;32(1):60–6.

    Article  CAS  Google Scholar 

  36. Le Viet D, Rousselin B, Roulot E, Lantieri L, Godefroy D. Diagnosis of digital pulley rupture by computed tomography. J hand Surg. 1996;21(2):245–8.

    Article  Google Scholar 

  37. Goncalves-Matoso V, Guntern D, Gray A, Schnyder P, Picht C, Theumann N. Optimal 3-T MRI for depiction of the finger A2 pulley: comparison between T1-weighted, fat-saturated T2-weighted and gadolinium-enhanced fat-saturated T1-weighted sequences. Skeletal Radiol. 2008;37(4):307–12.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayer, T., Adler, W., Schweizer, A. et al. Evaluation of finger A3 pulley rupture in the crimp grip position—a magnetic resonance imaging cadaver study. Skeletal Radiol 44, 1279–1285 (2015). https://doi.org/10.1007/s00256-015-2160-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2160-2

Keywords

Navigation