Skip to main content

Advertisement

Log in

Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Bone strength depends on both mineral content and bone structure. The aim of this in vitro study was to develop a method of quantitatively assessing trabecular bone structure by applying three-dimensional image processing to data acquired with multi-slice and cone-beam computed tomography using micro-computed tomography as a reference.

Materials and Methods

Fifteen bone samples from the radius were examined. After segmentation, quantitative measures of bone volume, trabecular thickness, trabecular separation, trabecular number, trabecular nodes, and trabecular termini were obtained.

Results

The clinical machines overestimated bone volume and trabecular thickness and underestimated trabecular nodes and number, but cone-beam CT to a lesser extent. Parameters obtained from cone beam CT were strongly correlated with μCT, with correlation coefficients between 0.93 and 0.98 for all parameters except trabecular termini.

Conclusions

The high correlation between cone-beam CT and micro-CT suggest the possibility of quantifying and monitoring changes of trabecular bone microarchitecture in vivo using cone beam CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ulrich D, Van Rietbergen B, Laib A, Ruegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  2. Cullum ID, Ell PJ, Ryder JP. X-ray dual-photon absorptiometry: a new method for the measurement of bone density. Br J Radiol. 1989;62(739):587–92.

    Article  CAS  PubMed  Google Scholar 

  3. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of 3-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int. 1985;37(6):594–7.

    Article  CAS  PubMed  Google Scholar 

  4. Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone. 2000;27(2):277–82.

    Article  CAS  PubMed  Google Scholar 

  5. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  6. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, et al. Bone histomorphometry—standardization of nomenclature, symbols, and units. J Bone Miner Res. 1987;2(6):595–610.

    Article  CAS  PubMed  Google Scholar 

  7. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc. 2005;218:171–9.

    Article  CAS  PubMed  Google Scholar 

  8. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A. Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology. 2003;227(3):708–17.

    Article  PubMed  Google Scholar 

  9. Jara H, Wehrli FW, Chung H, Ford JC. High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med. 1993;29(4):528–39.

    Article  CAS  PubMed  Google Scholar 

  10. Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;239(2):488–96.

    Article  PubMed  Google Scholar 

  11. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.

    Article  CAS  PubMed  Google Scholar 

  12. Burrows M, Liu D, Perdios A, Moore S, Mulpuri K, McKay H. Assessing bone microstructure at the distal radius in children and adolescents using HR-pQCT: a methodological pilot study. J Clin Densitom: Off J Int Soc Clin Densitom. 2010;13(4):451–5.

    Article  Google Scholar 

  13. Petersson J, Brismar T, Smedby O. Analysis of skeletal microstructure with clinical multislice CT. In: Larsen R, Nielsen M, Sporring J, editors. Medical image computing and computer-assisted intervention—MICCAI 2006, Pt 2. Berlin: Springer; 2006. p. 880–7.

    Chapter  Google Scholar 

  14. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol. 1999;28(4):245–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hohlweg-Majert B, Metzger MC, Kummer T, Schulze D. Morphometric analysis—cone beam computed tomography to predict bone quality and quantity. J Craniomaxillofac Surg. 2011;39(5):330–4.

    Article  CAS  PubMed  Google Scholar 

  16. Hua Y, Nackaerts O, Duyck J, Maes F, Jacobs R. Bone quality assessment based on cone beam computed tomography imaging. Clin Oral Implants Res. 2009;20(8):767–71.

    Article  PubMed  Google Scholar 

  17. Nageie E, Kuhn V, Vogt H, Link TM, Muller R, Lochmuller EM, et al. Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif Tissue Int. 2004;75(1):15–22.

    Google Scholar 

  18. Bauer JS, Link TM. Advances in osteoporosis imaging. Eur J Radiol. 2009;71(3):440–9.

    Article  PubMed  Google Scholar 

  19. Liu XS, Sajda P, Saha PK, Wehrli FW, Bevill G, Keaveny TM, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23(2):223–35.

    Article  PubMed  Google Scholar 

  20. Bauer JS, Link TM, Burghardt A, Henning TD, Mueller D, Majumdar S, et al. Analysis of trabecular bone structure with multidetector spiral computed tomography in a simulated soft-tissue environment. Calcif Tissue Int. 2007;80(6):366–73.

    Article  CAS  PubMed  Google Scholar 

  21. Diederichs G, Link TM, Kentenich M, Schwieger K, Huber MB, Burghardt AJ, et al. Assessment of trabecular bone structure of the calcaneus using multi-detector CT: Correlation with microCT and biomechanical testing. Bone. 2009;44(5):976–83.

    Article  PubMed  Google Scholar 

  22. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.

    Article  PubMed  Google Scholar 

  23. Revol-Muller C, Peyrin F, Carrillon Y, Odet C. Automated 3D region growing algorithm based on an assessment function. Pattern Recogn Lett. 2002;23(1–3):137–50.

    Article  Google Scholar 

  24. Monje A, Monje F, Gonzalez-Garcia R, Galindo-Moreno P, Rodriguez-Salvanes F, Wang HL. Comparison between microcomputed tomography and cone-beam computed tomography radiologic bone to assess atrophic posterior maxilla density and microarchitecture. Clin Oral Implants Res. 2013doi: 10.1111/clr.12133.

  25. Tjong W, Kazakia GJ, Burghardt AJ, Majumdar S. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Medical Phys. 2012;39(4):1893–903.

    Article  Google Scholar 

  26. Kazakia GJ, Burghardt AJ, Link TM, Majumdar S. Variations in morphological and biomechanical indices at the distal radius in subjects with identical BMD. J Biomech. 2011;44(2):257–66.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Joshi V, Yamaguchi T, Matsuda Y, Kaneko N, Maki K, Okano T. Skeletal maturity assessment with the use of cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(6):841–9.

    Article  PubMed  Google Scholar 

  28. De Cock J, Mermuys K, Goubau J, Van Petegem S, Houthoofd B, Casselman JW. Cone-beam computed tomography: a new low dose, high resolution imaging technique of the wrist, presentation of three cases with technique. Skeletal Radiol. 2012;41(1):93–6.

    Article  PubMed  Google Scholar 

  29. Faccioli N, Foti G, Barillari M, Atzei A, Mucelli RP. Finger fractures imaging: accuracy of cone-beam computed tomography and multislice computed tomography. Skelet Radiol. 2010;39(11):1087–95.

    Article  Google Scholar 

  30. Koskinen SK, Haapamaki VV, Salo J, Lindfors NC, Kortesniemi M, Seppala L, et al. CT arthrography of the wrist using a novel, mobile, dedicated extremity cone-beam CT (CBCT). Skelet Radiol. 2013;42(5):649–57.

    Article  Google Scholar 

  31. Vlasiadis KZ, Damilakis J, Velegrakis GA, Skouteris CA, Fragouli I, Goumenou A, et al. Relationship between BMD, dental panoramic radiographic findings and biochemical markers of bone turnover in diagnosis of osteoporosis. Maturitas. 2008;59(3):226–33.

    Article  CAS  PubMed  Google Scholar 

  32. Jonasson G, Sundh V, Hakeberg M, Hassani-Nejad A, Lissner L, Ahlqwist M. Mandibular bone changes in 24 years and skeletal fracture prediction. Clin Oral Investig. 2013;17(2):565–72.

    Article  CAS  PubMed  Google Scholar 

  33. Sode M, Burghardt AJ, Nissenson RA, Majumdar S. Resolution dependence of the non-metric trabecular structure indices. Bone. 2008;42(4):728–36.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Helmrot E, Thilander-Klang A. Methods for monitoring patient dose in dental radiology. Radiat Protect Dosim. 2010;139(1–3):303–5.

    Article  Google Scholar 

Download references

Acknowledgements

Andres Laib at Scanco Medical AG in Switzerland performed the µCT imaging.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Klintström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klintström, E., Smedby, Ö., Moreno, R. et al. Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data. Skeletal Radiol 43, 197–204 (2014). https://doi.org/10.1007/s00256-013-1766-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1766-5

Keywords

Navigation