Skip to main content

Advertisement

Log in

Finger fractures imaging: accuracy of cone-beam computed tomography and multislice computed tomography

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To compare the diagnostic accuracy and radiation exposure of cone beam computed tomography (CBCT) and multislice computed tomography (MSCT) in the evaluation of finger fractures.

Materials and methods

In a 3-year period, 57 consecutive patients with post-traumatic fractures of the metacarpal–phalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints with involvement of the articular surface were studied by means of CBCT and MSCT. Student’s t test was used to compare CBCT and MSCT accuracy in evaluating the percentage of joint surface involvement and in detecting bone fragments. The average tissue-absorbed doses of CBCT and MSCT were also compared. A value of p < 0.05 was considered statistically significant. Inter-observer agreement was calculated.

Results

In all cases, CBCT allowed the percentage of articular involvement to be correctly depicted compared with MSCT, showing 100% sensitivity and specificity (p < 0.001). A total of 103 bone fragments were depicted on MSCT (mean 3.8 per patient, range 1–23). CBCT indicated 92 out of 103 fragments (89.3%) compared with MSCT (mean diameter of missed fragments 0.9 mm, range 0.6–1.3 mm), with no statistically significant difference between CBCT and MSCT (p < 0.025). Multislice CT radiation exposure was significantly higher than that of CBCT (0.18 mSv vs 0.06 mSv, p < 0.0025). Inter-observer agreement was good (overall κ = 0.89–0.96).

Conclusions

Cone beam CT may be considered a valuable imaging tool in the preoperative assessment of finger fractures, when MSCT is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Badia A, Riano F, Ravikoff J, Khouri R, Gonzalez-Hernandez E, Orbay JL. Dynamic intradigital external fixation for proximal interphalangeal joint fracture dislocations. J Hand Surg. 2005;30:154–60.

    Article  Google Scholar 

  2. Chinchalkar SJ, Gan BS. Management of proximal interphalangeal joint fractures and dislocations. J Hand Ther. 2003;16:117–28.

    Article  PubMed  Google Scholar 

  3. Lubahn JD, Hood JM. Fractures of the distal interphalangeal joint. Clin Orthop Relat Res. 1996;(327):12–20.

  4. Glickel SZ, Barron OA. Proximal interphalangeal joint fracture dislocations. Hand Clin. 2000;16:333–44.

    CAS  PubMed  Google Scholar 

  5. Heuck A, Bonél H, Stäbler A, Schmitt R. Imaging in sports medicine: hand and wrist. Eur J Radiol. 1997;26:2–15.

    Article  CAS  PubMed  Google Scholar 

  6. Schenck RR. Dynamic traction and early passive movement for fractures for the proximal interphalangeal joint. J Hand Surg. 1986;11:850–8.

    CAS  Google Scholar 

  7. Newington DP, Davis TR, Barton NJ. The treatment of dorsal fracture-dislocation of the proximal interphalangeal joint by closed reduction and Kirschner wire fixation: a 16-year follow up. J Hand Surg. 2001;26:537–40.

    CAS  Google Scholar 

  8. Viegas SF. Extension block pinning for proximal interphalangeal joint fracture dislocations: preliminary report of a new technique. J Hand Surg. 1992;17:896–901.

    Article  CAS  Google Scholar 

  9. Grant I, Berger AC, Tham SK. Internal fixation of unstable fracture dislocations of the proximal interphalangeal joint. J Hand Surg. 2005;30:492–8.

    CAS  Google Scholar 

  10. Zeitoun F, Dubert T, Frot B, Laredo JD. Imaging of the wrist and of the hand: what is the best modality? J Radiol. 2001;82:335–52.

    CAS  PubMed  Google Scholar 

  11. Schreibman KL, Freeland A, Gilula LA, Yin Y. Imaging of the hand and wrist. Orthop Clin North Am. 1997;28:537–82.

    Article  CAS  PubMed  Google Scholar 

  12. Feldkamp LA, Davis LC, Webb S. Comments, with reply, on: Tomographic reconstruction from experimentally obtained cone-beam projections’ by S. Webb, et al. IEEE Trans Med Imaging. 1988;7(1):73–4.

    Article  CAS  PubMed  Google Scholar 

  13. Guerrero ME, Reinhilde J, Loubele M, Schutyser F, Suetens P, Van Steenberghe D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Invest. 2006;10:1–7.

    Article  Google Scholar 

  14. Mozzo P, Procacci C, Tacconi A, et al. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8:1558–64.

    Article  CAS  PubMed  Google Scholar 

  15. Faccioli N, Barillari M, Guariglia S, et al. Radiation dose saving through the use of cone-beam CT in hearing-impaired patients. Radiol Med. 2009;114:1308–18.

    Article  CAS  PubMed  Google Scholar 

  16. Guerrero ME, Jacobs R, Loubele M, Schutyser F, Suetens P, van Steenberghe D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clin Oral Invest. 2006;10:1–7.

    Article  Google Scholar 

  17. Tsiklakis K, Donta C, Gavala S, et al. Dose reduction in maxillofacial imaging using low dose Cone Beam CT. Eur J Radiol. 2005;56:413–7.

    Article  PubMed  Google Scholar 

  18. Ludlow JB, Davies-Ludlow LE, Brooks SL, et al. Dosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CAT. Dentomaxillofac Radiol. 2006;35:219–26.

    Article  CAS  PubMed  Google Scholar 

  19. Osorio F, Perilla M, Doyle DJ, Palomo JM. Cone beam computed tomography: an innovative tool for airway assessment. Anesth Analg. 2008;106:1803–7.

    Article  PubMed  Google Scholar 

  20. Hiwatashi A, Yoshiura T, Noguchi T, et al. Usefulness of cone-beam CT before and after percutaneous vertebroplasty. AJR Am J Roentgenol. 2008;191:1401–5.

    Article  PubMed  Google Scholar 

  21. Dalchow CV, Weber AL, Yanagihara N, et al. Digital volume tomography: radiologic examinations of the temporal bone. AJR Am J Roentgenol. 2006;186:416–23.

    Article  PubMed  Google Scholar 

  22. Dalchow CV, Weber AL, Bien S, et al. Value of digital volume tomography in patients with conductive hearing loss. Eur Arch Otorhinolaryngol. 2006;263:92–9.

    Article  CAS  PubMed  Google Scholar 

  23. Cerini R, Faccioli N, Barillari M, et al. Bionic ear imaging. Radiol Med. 2008;113:265–77.

    Article  CAS  PubMed  Google Scholar 

  24. Schenck RR. Classification of fractures and dislocations of the proximal interphalangeal joint. Hand Clin. 1994;10:179–85.

    CAS  PubMed  Google Scholar 

  25. Capo JT, Hastings II H, Choung E, Kinchelow T, Rossy W, Steinberg B. Hemicondylar hamate replacement arthroplasty for proximal interphalangeal joint fracture dislocations: an assessment of graft suitability. J Hand Surg. 2008;33:733–9.

    Article  Google Scholar 

  26. Miracle AC, Mukherji SK. Conebeam CT of the head and neck. I. Physical principles. AJNR Am J Neuroradiol. 2009;30:1088–95.

    Article  CAS  PubMed  Google Scholar 

  27. Robinson S, Suomalainen A, Kortesniemi M. MU CT. Eur J Radiol. 2005;56:185–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Foti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faccioli, N., Foti, G., Barillari, M. et al. Finger fractures imaging: accuracy of cone-beam computed tomography and multislice computed tomography. Skeletal Radiol 39, 1087–1095 (2010). https://doi.org/10.1007/s00256-010-0911-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-010-0911-7

Keywords

Navigation