Skip to main content

Advertisement

Log in

Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

We sought to optimize the kilovoltage, tube current, and the radiation dose of computed tomographic arthrography of the hip joint using in vitro methods.

Materials and methods

A phantom was prepared using a left femoral head harvested from a patient undergoing total hip arthroplasty and packed in a condom filled with iodinated contrast. The right hip joint of a cadaver was also injected with iodinated contrast. The phantom and the cadaver were scanned using different values of peak kilovoltage (kVp) and tube current (milliamp seconds, mAs). Three different regions of interest (ROI) were drawn in the cartilage, subchondral bone plate, and intraarticular contrast. The attenuation values, contrast/noise ratio (CNR), and effective dose were calculated. Two independent observers classified the quality of the contrast-cartilage interface and the cartilage-subchondral bone plate interface as (1) diagnostic quality or (2) nondiagnostic quality.

Results

Contrast, cartilage, and subchondral bone plate attenuation values decreased at higher kVp. CNR increased with both kVp and mAs. The qualitative analysis showed that in both phantom and cadaver, at 120 kVp and 50 mAs, the contrast-cartilage and cartilage-subchondral bone plate interfaces were of diagnostic quality, with an effective dose decreased to 0.5 MSv.

Conclusions

The absolute effective dose is not directly related to the quality of images but to the specific combination of kVp and mAs used for image acquisition. The combination of 120 kVp and 50 mAs can be suggested to decrease the dose without adversely affect the visibility of cartilage and subchondral bone plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schmid MR, Pfirrmann CWA, Hodler J, et al. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol. 2003;32:259–65.

    Article  CAS  PubMed  Google Scholar 

  2. Vande Berg BC, Lecouvet FE, Poilvache P, et al. Spiral CT arthrography of the knee: technique and value in the assessment of internal derangement of the knee. Eur Radiol. 2002;12:1800–10.

    Article  CAS  PubMed  Google Scholar 

  3. Perdikakis E, Karachalios T, Katonis P, et al. Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skeletal Radiol. 2011;40:1441–7.

    Article  PubMed  Google Scholar 

  4. Omoumi P, Bafort A-C, Dubuc J-E, et al. Evaluation of rotator cuff tendon tears: comparison of multidetector CT arthrography and 1.5-T MR arthrography. Radiology. 2012;264:812–22.

    Article  PubMed  Google Scholar 

  5. Lecouvet FE, Dorzée B, Dubuc JE, et al. Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol. 2007;17:1763–71.

    Article  PubMed  Google Scholar 

  6. Delport AG, Zoga AC. MR and CT arthrography of the elbow. Semin Musculoskelet Radiol. 2012;16:15–26.

    Article  PubMed  Google Scholar 

  7. Cerezal L, de Dios Berná-Mestre J, Canga A, et al. MR and CT arthrography of the wrist. Semin Musculoskelet Radiol. 2012;16:27–41.

    Article  PubMed  Google Scholar 

  8. Omoumi P, Mercier GA, Lecouvet F, et al. CT arthrography, MR arthrography, PET, and scintigraphy in osteoarthritis. Radiol Clin North Am. 2009;47:595–615.

    Article  PubMed  Google Scholar 

  9. Edyvean S. CT equipment and performance issues: radiation protection 162. Radiat Prot Dosim Published Online First: 27 November 2012. doi:10.1093/rpd/ncs285.

  10. Mori S, Endo M, Nishizawa K, et al. Comparison of patient doses in 256-slice CT and 16-slice CT scanners. Br J Radiol. 2006;79:56–61.

    Article  CAS  PubMed  Google Scholar 

  11. Jaffe TA, Hoang JK, Yoshizumi TT, et al. Radiation dose for routine clinical adult brain CT: variability on different scanners at one institution. AJR Am J Roentgenol. 2010;195:433–8.

    Article  PubMed  Google Scholar 

  12. Fujii K, Aoyama T, Yamauchi-Kawaura C, et al. Radiation dose evaluation in 64-slice CT examinations with adult and paediatric anthropomorphic phantoms. Br J Radiol. 2009;82:1010–8.

    Article  CAS  PubMed  Google Scholar 

  13. Amis Jr ES, Butler PF, Applegate KE, et al. American College of Radiology white paper on radiation dose in medicine. J Am Coll Radiol. 2007;4:272–84.

    Article  PubMed  Google Scholar 

  14. Ball CG, Correa-Gallego C, Howard TJ, et al. Radiation dose from computed tomography in patients with necrotizing pancreatitis: how much is too much? J Gastrointest Surg. 2010;14:1529–35.

    Article  PubMed  Google Scholar 

  15. Berrington de González A, Mahesh M, Kim K-P, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;169:2071–7.

    Article  PubMed  Google Scholar 

  16. Cohen BL. Cancer risk from low-level radiation. AJR Am J Roentgenol. 2002;179:1137–43.

    Article  PubMed  Google Scholar 

  17. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA. 2007;298:317–23.

    Article  CAS  PubMed  Google Scholar 

  18. Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol. 2008;81:362–78.

    Article  CAS  PubMed  Google Scholar 

  19. Tamm EP, Rong XJ, Cody DD, et al. Quality initiatives: CT radiation dose reduction: how to implement change without sacrificing diagnostic quality. Radiographics. 2011;31:1823–32.

    Article  PubMed  Google Scholar 

  20. Huda W, He W. Estimating cancer risks to adults undergoing body CT examinations. Radiat Prot Dosimetry. 2011;150:168–79.

    Article  PubMed  Google Scholar 

  21. Mathews JD, Forsythe AV, Brady Z, et al. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Gervaise A, Teixeira P, Villani N, et al. CT dose optimisation and reduction in osteoarticular disease. Diagn Interv Imaging. 2013;94:371–88.

    Article  CAS  PubMed  Google Scholar 

  23. McNitt-Gray MF. AAPM/RSNA physics tutorial for residents: topics in CT. Radiation dose in CT. Radiographics. 2002;22:1541–53.

    Article  PubMed  Google Scholar 

  24. AAPM Report No. 96: The Measurement, Reporting, and Management of Radiation Dose in CT–Report of AAPM Task Group 23 of the Diagnostic Imaging Council CT Committee http://www.aapm.org/pubs/reports/rpt_96.pdf.

  25. Ha Y-C, Choi J-A, Lee Y-K, et al. The diagnostic value of direct CT arthrography using MDCT in the evaluation of acetabular labral tear: with arthroscopic correlation. Skeletal Radiol. 2013;42:681–8.

    Article  PubMed  Google Scholar 

  26. Llopis E, Fernandez E, Cerezal L. MR and CT arthrography of the hip. Semin Musculoskelet Radiol. 2012;16:42–56.

    Article  PubMed  Google Scholar 

  27. Smith TO, Simpson M, Ejindu V, et al. The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip. Eur J Orthop Surg Traumatol. 2013;23:335–44.

    Article  PubMed  Google Scholar 

  28. Tamura S, Nishii T, Shiomi T, et al. Three-dimensional patterns of early acetabular cartilage damage in hip dysplasia; a high-resolutional CT arthrography study. Osteoarthr Cart. 2012;20:646–52.

    Article  CAS  Google Scholar 

  29. Christie-Large M, Tapp MJF, Theivendran K, et al. The role of multidetector CT arthrography in the investigation of suspected intra-articular hip pathology. Br J Radiol. 2010;83:861–7.

    Article  CAS  PubMed  Google Scholar 

  30. Gervaise A, Osemont B, Lecocq S, et al. CT image quality improvement using adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol. 2012;22:295–301.

    Article  PubMed  Google Scholar 

  31. Subhas N, Freire M, Primak AN, et al. CT arthrography: in vitro evaluation of single and dual energy for optimization of technique. Skeletal Radiol. 2010;39:1025–31.

    Article  PubMed  Google Scholar 

  32. Van Tiel J, Siebelt M, Waarsing JH, et al. CT arthrography of the human knee to measure cartilage quality with low radiation dose. Osteoarthr Cart. 2012;20:678–85.

    Article  Google Scholar 

  33. Kalra MK, Saini S, Rubin GD, editors. MDCT: From Protocols to Practice. 2008 Springer 2008.

  34. Mahesh M. MDCT Physics: The Basics—Technology, Image Quality and Radiation Dose. 1st ed. Lippincott Williams and Wilkins 2009.

  35. Kalender WA, Deak P, Kellermeier M, et al. Application- and patient size-dependent optimization of X-ray spectra for CT. Med Phys. 2009;36:993–1007.

    Article  PubMed  Google Scholar 

  36. McCollough CH, Bruesewitz MR, Kofler Jr JM. CT dose reduction and dose management tools: overview of available options. Radiographics. 2006;26:503–12.

    Article  PubMed  Google Scholar 

  37. Van Straten M, Deak P, Shrimpton PC, et al. The effect of angular and longitudinal tube current modulations on the estimation of organ and effective doses in X-ray computed tomography. Med Phys. 2009;36:4881–9.

    Article  PubMed  Google Scholar 

  38. Hara AK, Paden RG, Silva AC, et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol. 2009;193:764–71.

    Article  PubMed  Google Scholar 

  39. Silva AC, Lawder HJ, Hara A, et al. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol. 2010;194:191–9.

    Article  PubMed  Google Scholar 

  40. Nicolaou S, Liang T, Murphy DT, et al. Dual-energy CT: a promising new technique for assessment of the musculoskeletal system. AJR Am J Roentgenol. 2012;199:S78–86.

    Article  PubMed  Google Scholar 

  41. Yu L, Christner JA, Leng S, et al. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38:6371–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Laurence Seidel, Ph.D., is acknowledged for contributing to the statistical analysis.

Conflicts of interest

The authors declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Simoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simoni, P., Leyder, PP., Albert, A. et al. Optimization of computed tomography (CT) arthrography of hip for the visualization of cartilage: an in vitro study. Skeletal Radiol 43, 169–178 (2014). https://doi.org/10.1007/s00256-013-1759-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-013-1759-4

Keywords

Navigation