Skip to main content

Advertisement

Log in

Reproducibility of trabecular structure analysis using flat-panel volume computed tomography

  • Technical Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To determine inter-scan, inter-reader and intra-reader variability of trabecular structure analysis using flat-panel volume computed tomography (fp-VCT) in cadaver knee specimens.

Methods

Five explanted knee specimens were imaged at three different time points using fp-VCT. Four parameters that quantify trabecular bone structure of the proximal tibia were measured by two observers at two different time points. Bland–Altman analysis was used to compute the inter-scan, inter-observer and intra-observer variability.

Results

Inter-scan variability was low, with a mean difference of 0% and a standard deviation less than 8.4% for each of the four parameters. The inter-observer and intra-observer variability was less than 2.8% ± 8.5%.

Conclusion

Fp-VCT is a method for assessing trabecular structure parameters with low inter-scan, inter-reader and intra-reader variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285: 785–795.

    Article  Google Scholar 

  2. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int. 1985; 37: 594–597.

    Article  PubMed  CAS  Google Scholar 

  3. Ladinsky GA, Wehrli FW. Noninvasive assessment of bone microarchitecture by MRI. Curr Osteoporos Rep 2006; 4: 140–147.

    Article  PubMed  Google Scholar 

  4. Laib A, Hildebrand T, Hauselmann HJ, Ruegsegger P. Ridge number density: a new parameter for in vivo bone structure analysis. Bone 1997; 21: 541–546.

    Article  PubMed  CAS  Google Scholar 

  5. Link TM, Bauer J, Kollstedt A, et al. Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 2004; 39: 487–497.

    Article  PubMed  Google Scholar 

  6. Milos G, Spindler A, Ruegsegger P, et al. Cortical and trabecular bone density and structure in anorexia nervosa. Osteoporos Int 2005; 16: 783–790.

    Article  PubMed  Google Scholar 

  7. Newitt DC, Majumdar S, van Rietbergen B, et al. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 2002; 13: 6–17.

    Article  PubMed  CAS  Google Scholar 

  8. Patel PV, Prevrhal S, Bauer JS, et al. Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 2005; 29: 246–253.

    Article  PubMed  Google Scholar 

  9. Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed 2006; 19: 731–764.

    Article  PubMed  Google Scholar 

  10. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005; 90: 6508–6515.

    Article  PubMed  CAS  Google Scholar 

  11. Gomberg BR, Wehrli FW, Vasilic B, et al. Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 2004; 35: 266–276.

    Article  PubMed  CAS  Google Scholar 

  12. Damilakis J, Maris TG, Karantanas AH. An update on the assessment of osteoporosis using radiologic techniques. Eur Radiol 2007; 17: 1591–1602.

    Article  PubMed  Google Scholar 

  13. Kalender WA. The use of flat-panel detectors for CT imaging. Radiologe 2003; 43: 379–387.

    Article  PubMed  CAS  Google Scholar 

  14. Gupta R, Grasruck M, Suess C, et al. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol 2006; 16: 1191–1205.

    Article  PubMed  Google Scholar 

  15. Parfitt AM. Bone histomorphometry: standardization of nomenclature, symbols and units. Summary of proposed system. Bone Miner 1988; 4: 1–5.

    PubMed  CAS  Google Scholar 

  16. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307–310.

    PubMed  CAS  Google Scholar 

  17. Link TM, Saborowski S, Kisters K, et al. Changes in calcaneal trabecular bone structure assessed with high-resolution MR imaging in patients with kidney transplantation. Osteoporos Int 2002; 13: 119–129.

    Article  PubMed  CAS  Google Scholar 

  18. Ross PD, Wasnich RD, Davis JW. Fracture prediction models for osteoporosis prevention. Bone 1990; 11: 327–331.

    Article  PubMed  CAS  Google Scholar 

  19. Benhamou CL. Effects of osteoporosis medications on bone quality. Joint Bone Spine 2007; 74: 39–47.

    Article  PubMed  CAS  Google Scholar 

  20. Chen P, Miller PD, Recker R, et al. Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. J Bone Miner Res 2007; 22: 1173–1180.

    Article  PubMed  CAS  Google Scholar 

  21. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995; 332: 767–773.

    Article  PubMed  CAS  Google Scholar 

  22. Link TM, Majumdar S. Current diagnostic techniques in the evaluation of bone architecture. Curr Osteoporos Rep 2004; 2: 47–52.

    Article  PubMed  Google Scholar 

  23. Parisien MV, McMahon D, Pushparaj N, Dempster DW. Trabecular architecture in iliac crest bone biopsies: infra-individual variability in structural parameters and changes with age. Bone 1988; 9: 289–295.

    Article  PubMed  CAS  Google Scholar 

  24. Bredella MA, Misra M, Miller KK, et al. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology 2008; 249: 938–946.

    Article  PubMed  Google Scholar 

  25. Thomsen JS, Ebbesen EN, Mosekilde L. Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 2002; 30: 502–508.

    Article  PubMed  CAS  Google Scholar 

  26. Phan CM, Matsuura M, Bauer JS, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 2006; 239: 488–496.

    Article  PubMed  Google Scholar 

  27. Link TM, Vieth V, Stehling C, et al. High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 2003; 13: 663–671.

    PubMed  Google Scholar 

  28. Reichardt B, Sarwar A, Bartling SH, et al. Musculoskeletal applications of flat-panel volume CT. Skeletal Radiol 2008; 37: 1069–1076.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiv Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, A.C., Bredella, M.A., Al Khalaf, M. et al. Reproducibility of trabecular structure analysis using flat-panel volume computed tomography. Skeletal Radiol 38, 1003–1008 (2009). https://doi.org/10.1007/s00256-009-0707-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-009-0707-9

Keywords

Navigation