Anderson FA (2005) Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int J Toxicol 24:21–50. https://doi.org/10.1080/10915810590953842
CAS
Article
Google Scholar
Basso A, Serban S (2019) Industrial applications of immobilized enzymes—a review. Mol Catal 479:110607. https://doi.org/10.1016/j.mcat.2019.110607
CAS
Article
Google Scholar
Beerens K, De Winter K, Van De Walle D, Grootaert C, Kamiloglu S, Miclotte L, Van De Wiele T, Van Camp J, Dewettinck K, Desmet T (2017) Biocatalytic synthesis of the rare sugar kojibiose: process scale-up and application testing. J Agric Food Chem 65:6030–6041. https://doi.org/10.1021/acs.jafc.7b02258
CAS
Article
PubMed
Google Scholar
Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300. https://doi.org/10.1128/mmbr.60.2.280-300.1996
CAS
Article
PubMed
PubMed Central
Google Scholar
Bolivar JM, Luley-Goedl C, Leitner E, Sawangwan T, Nidetzky B (2017) Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format. J Biotechnol 257:131–138. https://doi.org/10.1016/j.jbiotec.2017.01.019
CAS
Article
PubMed
Google Scholar
Buchholz K, Kasche V, Bornscheuer UT (2012) Biocatalysts and enzyme technology, second. Wiley-VCH Verlag & Co. KGaA, Weinheim
Google Scholar
Carballeira JD, Quezada MA, Hoyos P, Simeó Y, Hernaiz MJ, Alcantara AR, Sinisterra JV (2009) Microbial cells as catalysts for stereoselective red-ox reactions. Biotechnol Adv 27:686–714. https://doi.org/10.1016/j.biotechadv.2009.05.001
CAS
Article
PubMed
Google Scholar
Cerdobbel A, Desmet T, De Winter K, Maertens J, Soetaert W (2010) Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization. J Biotechnol 150:125–130. https://doi.org/10.1016/j.jbiotec.2010.07.029
CAS
Article
PubMed
Google Scholar
Cheetham PSJ (1987) Production of isomaltulose using immobilized microbial cells. Methods Enzymol 136:432–454. https://doi.org/10.1016/S0076-6879(87)36042-2
CAS
Article
Google Scholar
Cheetham PSJ, Garrett C, Clark J (1985) Isomaltulose production using immobilized cells. Biotechnol Bioeng 27:471–481. https://doi.org/10.1002/bit.260270412
CAS
Article
Google Scholar
Chibata I (1996) Industrial applications of immobilized biocatalysts and biomaterials. In: Advances in Molecular and Cell Biology, vol 15A. Jai Press Inc, pp 151–160
Chibata I, Tosa T, Sato T (1986) Continuous production of L-aspartic acid - improvement of productivity by both development of immobilization method and construction of new Escherichia coli strain. Appl Biochem Biotechnol 13:231–240. https://doi.org/10.1007/BF02798461
CAS
Article
Google Scholar
De Santis P, Meyer LE, Kara S (2020) The rise of continuous flow biocatalysis-fundamentals, very recent developments and future perspectives. React Chem Eng 5:2155–2184. https://doi.org/10.1039/d0re00335b
CAS
Article
Google Scholar
De Winter K, Cerdobbel A, Soetaert W, Desmet T (2011) Operational stability of immobilized sucrose phosphorylase: continuous production of α-glucose-1-phosphate at elevated temperatures. Process Biochem 46:2074–2078. https://doi.org/10.1016/j.procbio.2011.08.002
CAS
Article
Google Scholar
De Winter K, Soetaert W, Desmet T (2012) An imprinted cross-linked enzyme aggregate (iCLEA) of sucrose phosphorylase: Combining improved stability with altered specificity. Int J Mol Sci 13:11333–11342. https://doi.org/10.3390/ijms130911333
CAS
Article
PubMed
PubMed Central
Google Scholar
Di Cosimo R, Mc Auliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474. https://doi.org/10.1039/c3cs35506c
CAS
Article
Google Scholar
Franceus J, Desmet T (2020) Sucrose phosphorylase and related enzymes in glycoside hydrolase family 13: discovery, application and engineering. Int J Mol Sci 21. https://doi.org/10.3390/ijms21072526
Franceus J, Ubiparip Z, Beerens K, Desmet T (2021) Engineering of a thermostable biocatalyst for the synthesis of 2-O-glucosylglycerol. ChemBioChem. https://doi.org/10.1002/cbic.202100192
Fukui S, Tanaka A (1982) Immobilized microbial cells. Annu Rev Microbiol 36:145–172. https://doi.org/10.1146/annurev.mi.36.100182.001045
CAS
Article
PubMed
Google Scholar
Gargalo CL, Udugama I, Pontius K, Lopez PC, Nielsen RF, Hasanzadeh A, Mansouri SS, Bayer C, Junicke H, Gernaey KV (2020) Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes. J Ind Microbiol Biotechnol 47:947–964. https://doi.org/10.1007/s10295-020-02308-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Gaytán I, Burelo M, Loza-Tavera H (2021) Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved. Appl Microbiol Biotechnol 105:991–1006. https://doi.org/10.1007/s00253-020-11073-1
CAS
Article
PubMed
Google Scholar
Goedl C, Schwarz A, Minani A, Nidetzky B (2007) Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of α-D-glucose 1-phosphate. J Biotechnol 129:77–86. https://doi.org/10.1016/j.jbiotec.2006.11.019
CAS
Article
PubMed
Google Scholar
Goedl C, Sawangwan T, Mueller M, Schwarz A, Nidetzky B (2008) A high-yielding biocatalytic process for the production of 2-O-(α-D-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient. Angew Chem Int Ed 47:10086–10089. https://doi.org/10.1002/anie.200803562
CAS
Article
Google Scholar
Goedl C, Sawangwan T, Wildberger P, Nidetzky B (2010) Sucrose phosphorylase: a powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals. Biocatal Biotransformation 28:10–21. https://doi.org/10.3109/10242420903411595
CAS
Article
Google Scholar
Guisan JM, Bolivar JM, López-Gallego F, Rocha-Martín J (eds) (2020) Immobilization of enzymes and cells. Springer US, New York
Google Scholar
Hann EC, Sigmund AE, Hennessey SM, Gavagan JE, Short DR, Ben-Bassat A, Chauhan S, Fallon RD, Payne MS, DiCosimo R (2002) Optimization of an immobilized-cell biocatalyst for production of 4-cyanopentanoic acid. Org Process Res Dev 6:492–496. https://doi.org/10.1021/op025515k
CAS
Article
Google Scholar
Hartman RL (2020) Flow chemistry remains an opportunity for chemists and chemical engineers. Curr Opin Chem Eng 29:42–50. https://doi.org/10.1016/j.coche.2020.05.002
Article
Google Scholar
Holtkamp M, Erhardt FA, Jördening HJ, Scholl S (2009) Reaction-integrated separation of isomaltose by ad- and desorption on zeolite. Chem Eng Process Process Intensif 48:852–858. https://doi.org/10.1016/j.cep.2008.11.001
CAS
Article
Google Scholar
Jack TR, Zajic JE (2005) The immobilization of whole cells. In: Ghose TK, Fiechter A, Blakebrough N (eds) Advances in Biochemical Engineering, vol 5. Springer, Berlin, pp 125–145
Google Scholar
Jung ES, Kim HJ, Oh DK (2005) Tagatose production by immobilized recombinant Escherichia coli cells containing Geobacillus stearothermophilus L-arabinose isomerase mutant in a packed-bed bioreactor. Biotechnol Prog 21:1335–1340. https://doi.org/10.1021/bp050078p
CAS
Article
PubMed
Google Scholar
Klimacek M, Sigg A, Nidetzky B (2020) On the donor substrate dependence of group-transfer reactions by hydrolytic enzymes: insight from kinetic analysis of sucrose phosphorylase-catalyzed transglycosylation. Biotechnol Bioeng 117:2933–2943. https://doi.org/10.1002/bit.27471
CAS
Article
PubMed
PubMed Central
Google Scholar
Krasňan V, Stloukal R, Rosenberg M, Rebroš M (2016) Immobilization of cells and enzymes to LentiKats®. Appl Microbiol Biotechnol 100:2535–2553. https://doi.org/10.1007/s00253-016-7283-4
CAS
Article
PubMed
Google Scholar
Krasňan V, Plž M, Marr AC, Markošová K, Rosenberg M, Rebroš M (2018) Intensified crude glycerol conversion to butanol by immobilized Clostridium pasteurianum. Biochem Eng J 134:114–119. https://doi.org/10.1016/j.bej.2018.03.005
CAS
Article
Google Scholar
Kraus M, Görl J, Timm M, Seibel J (2016) Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity. Chem Commun 52:4625–4627. https://doi.org/10.1039/c6cc00934d
CAS
Article
Google Scholar
Kruschitz A, Nidetzky B (2020a) Removal of glycerol from enzymatically produced 2-α-D-glucosyl-glycerol by discontinuous diafiltration. Sep Purif Technol 241:116749. https://doi.org/10.1016/j.seppur.2020.116749
CAS
Article
Google Scholar
Kruschitz A, Nidetzky B (2020b) Reactive extraction of fructose for efficient separation of sucrose-derived glucosides produced by enzymatic glycosylation. Green Chem 22:4985–4994. https://doi.org/10.1039/d0gc01408g
CAS
Article
Google Scholar
Liese A, Hilterhaus L (2013) Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev 42:6236–6249. https://doi.org/10.1039/c3cs35511j
CAS
Article
PubMed
Google Scholar
Liese A, Seelbach K, Wandrey C (eds) (2006) Industrial biotransformations. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Google Scholar
Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J (2013) How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 4:212–223. https://doi.org/10.4161/bioe.24761
Article
PubMed
PubMed Central
Google Scholar
Luley-Goedl C, Sawangwan T, Mueller M, Schwarz A, Nidetzky B (2010) Biocatalytic process for production of α-glucosylglycerol using sucrose phosphorylase. Food Technol Biotechnol 48:276–283
CAS
Google Scholar
McIver AM, Garikipati SVBJ, Bankole KS, Gyamerah M, Peeples TL (2008) Microbial oxidation of naphthalene to cis-1,2-naphthalene dihydrodiol using naphthalene dioxygenase in biphasic media. Biotechnol Prog 24:593–598. https://doi.org/10.1021/bp070416h
CAS
Article
PubMed
Google Scholar
Nishida Y, Sato T, Tosa T, Chibata I (1979) Immobilization of Escherichia coli cells having aspartase activity with carrageenan and locust bean gum. Enzym Microb Technol 1:95–99. https://doi.org/10.1016/0141-0229(79)90105-4
CAS
Article
Google Scholar
Nyyssölä A, Ahlgren J (2019) Microbial degradation of polyacrylamide and the deamination product polyacrylate. Int Biodeterior Biodegrad 139:24–33. https://doi.org/10.1016/j.ibiod.2019.02.005
CAS
Article
Google Scholar
Panova A, Mersinger LJ, Liu Q, Foo T, Roe DC, Spillan WL, Sigmund AE, Ben-Bassat A, Winona Wagner L, O’Keefe DP, Wu S, Perrillo KL, Payne MS, Breske ST, Gallagher FG, Dicosimo R (2007) Chemoenzymatic synthesis of glycolic acid. Adv Synth Catal 349:1462–1474. https://doi.org/10.1002/adsc.200700061
CAS
Article
Google Scholar
Pinto A, Contente ML, Tamborini L (2020) Advances on whole-cell biocatalysis in flow. Curr Opin Green Sustain Chem 25:100343. https://doi.org/10.1016/j.cogsc.2020.04.004
Article
Google Scholar
Rebroš M, Pilniková A, Šimčíková D, Weignerová L, Stloukal R, Křen V, Rosenberg M (2013) Recombinant α-L-rhamnosidase of Aspergillus terreus immobilization in polyvinylalcohol hydrogel and its application in rutin derhamnosylation. Biocatal Biotransformation 31:329–334. https://doi.org/10.3109/10242422.2013.858711
CAS
Article
Google Scholar
Roenneke B, Rosenfeldt N, Derya SM, Novak JF, Marin K, Krämer R, Seibold GM (2018) Production of the compatible solute α-D-glucosylglycerol by metabolically engineered Corynebacterium glutamicum. Microb Cell Factories 17:1–14. https://doi.org/10.1186/s12934-018-0939-2
CAS
Article
Google Scholar
Santi M, Sancineto L, Nascimento V, Azeredo JB, Orozco EVM, Andrade LH, Gröger H, Santi C (2021) Flow biocatalysis: a challenging alternative for the synthesis of APIs and natural compounds. Int J Mol Sci 22:1–32. https://doi.org/10.3390/ijms22030990
CAS
Article
Google Scholar
Schwaiger KN, Voit A, Dobiašová H, Luley C, Wiltschi B, Nidetzky B (2020) Plasmid design fortunable two-enzyme co-expression promotes whole-cell production of cellobiose. Biotechnol J 15:1–10. https://doi.org/10.1002/biot.202000063
CAS
Article
Google Scholar
Sheldon RA, Woodley JM (2018) Role of biocatalysis in sustainable chemistry. Chem Rev 118:801–838. https://doi.org/10.1021/acs.chemrev.7b00203
CAS
Article
PubMed
Google Scholar
Straathof AJJ (2014) Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev 114:1871–1908. https://doi.org/10.1021/cr400309c
CAS
Article
PubMed
Google Scholar
Tamborini L, Fernandes P, Paradisi F, Molinari F (2018) Flow bioreactors as complementary tools for biocatalytic process intensification. Trends Biotechnol 36:73–88. https://doi.org/10.1016/j.tibtech.2017.09.005
CAS
Article
PubMed
Google Scholar
Tan X, Luo Q, Lu X (2016) Biosynthesis, biotechnological production, and applications of glucosylglycerols. Appl Microbiol Biotechnol 100:6131–6139. https://doi.org/10.1007/s00253-016-7608-3
CAS
Article
PubMed
Google Scholar
Thompson MP, Peñafiel I, Cosgrove SC, Turner NJ (2019) Biocatalysis using immobilized enzymes in continuous flow for the synthesis of fine chemicals. Org Process Res Dev 23:9–18. https://doi.org/10.1021/acs.oprd.8b00305
CAS
Article
Google Scholar
Tosa T, Sato T, Mori T, Chibata I (1974) Basic studies for continuous production of L-aspartic acid by immobilized Escherichia coli cells. Appl Microbiol 27:886–889. https://doi.org/10.1128/aem.27.5.886-889.1974
CAS
Article
PubMed
PubMed Central
Google Scholar
Tosa T, Sato T, Mori T, Yamamoto K, Takata I, Nishida Y, Chibata I (1979) Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioeng 21:1697–1709. https://doi.org/10.1002/bit.260211002
CAS
Article
PubMed
Google Scholar
Trelles JA, Fernández-Lucas J, Condezo LA, Sinisterra JV (2004) Nucleoside synthesis by immobilised bacterial whole cells. J Mol Catal B Enzym 30:219–227. https://doi.org/10.1016/j.molcatb.2004.06.001
CAS
Article
Google Scholar
Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274. https://doi.org/10.1021/op1002165
CAS
Article
Google Scholar
Unterweger B, Stoisser T, Leitgeb S, Birner-Grünberger R, Nidetzky B (2012) Engineering of Aerococcus viridans L-lactate oxidase for site-specific PEGylation: characterization and selective bioorthogonal modification of a S218C mutant. Bioconjug Chem 23:1406–1414. https://doi.org/10.1021/bc2006847
CAS
Article
PubMed
Google Scholar
Vandamme EJ, Van Loo J, Machtelinckx L, De Laporte A (1987) Microbial sucrose phosphorylase: fermentation process, properties, and biotechnical applications. Adv Appl Microbiol 32:163–201. https://doi.org/10.1016/S0065-2164(08)70080-7
CAS
Article
Google Scholar
Wachtmeister J, Rother D (2016) Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr Opin Biotechnol 42:169–177. https://doi.org/10.1016/j.copbio.2016.05.005
CAS
Article
PubMed
Google Scholar
Woodley JM (2020) Towards the sustainable production of bulk-chemicals using biotechnology. New Biotechnol 59:59–64. https://doi.org/10.1016/j.nbt.2020.07.002
CAS
Article
Google Scholar
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT (2021) Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed 60:88–119. https://doi.org/10.1002/anie.202006648
CAS
Article
Google Scholar
Yamamoto K, Sato T, Tosa T, Chibata I (1974) Continuous production of L-citrulline by immobilized Pseudomonas putida cells. Biotechnol Bioeng 16:1589–1599. https://doi.org/10.1002/bit.260161203
CAS
Article
PubMed
Google Scholar
Yamane T, Tanaka R (2013) Highly accumulative production of L(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae. J Biosci Bioeng 115:90–95. https://doi.org/10.1016/j.jbiosc.2012.08.005
CAS
Article
PubMed
Google Scholar
Zajkoska P, Rebroš M, Rosenberg M (2013) Biocatalysis with immobilized Escherichia coli. Appl Microbiol Biotechnol 97:1441–1455. https://doi.org/10.1007/s00253-012-4651-6
CAS
Article
PubMed
Google Scholar
Zhang T, Yang J, Tian C, Ren C, Chen P, Men Y, Sun Y (2020) High-yield biosynthesis of glucosylglycerol through coupling phosphorolysis and transglycosylation reactions. J Agric Food Chem 68:15249–15256. https://doi.org/10.1021/acs.jafc.0c04851
CAS
Article
PubMed
Google Scholar