Asakawa Y, Hashimoto T, Takikawa K, Tori M, Ogawa S (1991) Prenyl bibenzyls from the liverworts Radula perrottetii and Radula complanata. Phytochemistry 30:235–251. https://doi.org/10.1016/0031-9422(91)84130-K
CAS
Article
Google Scholar
Brenda (2019) No Title. https://www.brenda-enzymes.info/. Accessed 14 Nov 2019
Burg JS, Espenshade PJ (2011) Regulation of HMG-CoA reductase in mammals and yeast. Prog Lipid Res 50:403–410. https://doi.org/10.1016/j.plipres.2011.07.002
CAS
Article
PubMed
Google Scholar
Carvalho Â, Hansen EH, Kayser O, Carlsen S, Stehle F (2017) Designing microorganisms for heterologous biosynthesis of cannabinoids. FEMS Yeast Res 17. https://doi.org/10.1093/femsyr/fox037
Chen N, Koumpouras GC, Polizzi KM, Kontoravdi C (2012) Genome-based kinetic modeling of cytosolic glucose metabolism in industrially relevant cell lines: Saccharomyces cerevisiae and Chinese hamster ovary cells. Bioprocess Biosyst Eng 35:1023–1033. https://doi.org/10.1007/s00449-012-0687-3
Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54. https://doi.org/10.1016/j.ymben.2012.11.002
CAS
Article
PubMed
Google Scholar
De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156. https://doi.org/10.1099/00221287-44-2-149
Article
PubMed
Google Scholar
Degenhardt F, Stehle F, Kayser O (2017) The biosynthesis of cannabinoids. In: handbook of Cannabis and related pathologies: biology, pharmacology, diagnosis, and treatment. Pp 13–23
Elshahawi SI, Shaaban KA, Kharel MK, Thorson JS (2015) A comprehensive review of glycosylated bacterial natural products. Chem Soc Rev 44:7591–7697. https://doi.org/10.1039/C4CS00426D
CAS
Article
PubMed
Google Scholar
Fellermeier M, Zenk MH (1998) Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol. FEBS Lett 427:283–285. https://doi.org/10.1016/S0014-5793(98)00450-5
CAS
Article
PubMed
Google Scholar
Fellermeier M, Eisenreich W, Bacher A, Zenk MH (2001) Biosynthesis of cannabinoids: incorporation experiments with 13C-labeled glucoses. Eur J Biochem 268:1596–1604. https://doi.org/10.1046/j.1432-1327.2001.02030.x
CAS
Article
PubMed
Google Scholar
Förster J, Famili I, Fu P, Palsson B, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253. https://doi.org/10.1101/gr.234503
CAS
Article
PubMed
Google Scholar
Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549. https://doi.org/10.1016/j.tplants.2005.09.007
CAS
Article
PubMed
Google Scholar
Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci U S A 109:12811–12816. https://doi.org/10.1073/pnas.1200330109
Article
PubMed
Google Scholar
Gajewski J, Pavlovic R, Fischer M, Boles E, Grininger M (2017) Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat Publ Group 8:1–8. https://doi.org/10.1038/ncomms14650
Article
Google Scholar
Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774. https://doi.org/10.1128/AEM.02681-08
CAS
Article
PubMed
Google Scholar
Hardman JM, Brooke RT, Zipp BJ (2014) Cannabinoid glycosides: in vitro production of a new class of cannabinoids with improved physicochemical properties. bioRxiv. https://doi.org/10.1101/104349
Harker M, Holmberg N, Clayton JC, Gibbard CL, Wallace AD, Rawlins S, Hellyer SA, Lanot A, Safford R (2003) Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase. Plant Biotechnol J 1:113–121. https://doi.org/10.1046/j.1467-7652.2003.00011.x
CAS
Article
PubMed
Google Scholar
Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC (2014) Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. ACS Synth Biol 3:298–306. https://doi.org/10.1021/sb400115e
CAS
Article
PubMed
Google Scholar
Izawa S, Inoue Y, Kimura A (1996) Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J 320:61–67. https://doi.org/10.1042/bj3200061
CAS
Article
PubMed
Google Scholar
Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47:D542–D549. https://doi.org/10.1093/nar/gky1048
CAS
Article
PubMed
Google Scholar
Keasling JD (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14:189–195. https://doi.org/10.1016/j.ymben.2012.01.004
CAS
Article
PubMed
Google Scholar
Krivoruchko A, Nielsen J (2015) Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr Opin Biotechnol 35:7–15. https://doi.org/10.1016/j.copbio.2014.12.004
CAS
Article
PubMed
Google Scholar
Ku B, Jeong JC, Mijts BN, Schmidt-Dannert C, Dordick JS (2005) Preparation, characterization, and optimization of an in vitro C 30 carotenoid pathway. Appl Environ Microbiol 71:6578–6583. https://doi.org/10.1128/AEM.71.11.6578-6583.2005
CAS
Article
PubMed
Google Scholar
Leber C, Da Silva NA (2014) Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111:347–358. https://doi.org/10.1002/bit.25021
CAS
Article
PubMed
Google Scholar
Lian J, Mishra S, Zhao H (2018) Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metab Eng 0–1 . https://doi.org/10.1016/j.tcm.2017.06.005, 27, 558
Lim EK (2005) Plant glycosyltransferases: their potential as novel biocatalysts. Chem Eur J 11:5486–5494. https://doi.org/10.1002/chem.200500115
CAS
Article
PubMed
Google Scholar
Liu P, Chernyshov A, Najdi T, Fu Y, Dickerson J, Sandmeyer S, Jarboe L (2013) Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3239–3251. https://doi.org/10.1007/s00253-013-4773-5
CAS
Article
PubMed
Google Scholar
Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, Zhang Y, Grzybowski AT, Harth S, Lin W, Lee H, Yu C, Shin J, Deng K, Benites VT, Wang G, Baidoo EEK, Chen Y, Dev I, Petzold CJ, Keasling JD (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567:123–126. https://doi.org/10.1038/s41586-019-0978-9
CAS
Article
PubMed
Google Scholar
Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697. https://doi.org/10.1038/nature19769
CAS
Article
PubMed
Google Scholar
Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236. https://doi.org/10.1046/j.1365-313X.1997.11020227.x
CAS
Article
PubMed
Google Scholar
Nagashima F, Asakawa Y (2011) Terpenoids and bibenzyls from three argentine liverworts. Molecules. 16:10471–10478. https://doi.org/10.3390/molecules161210471
Article
PubMed
Google Scholar
Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. https://doi.org/10.1038/nature12051
CAS
Article
PubMed
Google Scholar
Pollastro F, De Petrocellis L, Schiano-Moriello A, Chianese G, Heyman H, Appendino G, Taglialatela-Scafati O (2017) Amorfrutin-type phytocannabinoids from Helichrysum umbraculigerum. Fitoterapia. 123:13–17. https://doi.org/10.1016/j.fitote.2017.09.010
CAS
Article
PubMed
Google Scholar
Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159. https://doi.org/10.1128/AEM.66.8.3151-3159.2000
CAS
Article
PubMed
Google Scholar
Ro DK, Paradise EM, Quellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. https://doi.org/10.1038/nature04640
CAS
Article
PubMed
Google Scholar
Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113. https://doi.org/10.1016/j.ymben.2013.07.003
CAS
Article
PubMed
Google Scholar
SABIO (2019) No title
Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011a) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep 16:15–23. https://doi.org/10.1179/174329211X12968219310954
CAS
Article
Google Scholar
Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI (2011b) Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res 346:933–938. https://doi.org/10.1016/j.carres.2011.03.005
CAS
Article
PubMed
Google Scholar
Sheng J, Feng X (2015) Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6:554. https://doi.org/10.3389/fmicb.2015.00554
Article
PubMed
Google Scholar
Shiba Y, Paradise EM, Kirby J, Ro DK, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168. https://doi.org/10.1016/j.ymben.2006.10.005
CAS
Article
PubMed
Google Scholar
Shoyama Y, Tamada T, Kurihara K, Takeuchi A, Taura F, Arai S, Blaber M, Shoyama Y, Morimoto S, Kuroki R (2012) Structure and function of Δ1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J Mol Biol 423:96–105. https://doi.org/10.1016/j.jmb.2012.06.030
CAS
Article
PubMed
Google Scholar
The MathWorks (2017) SimBiology Toolbox. Natick, Massachusetts, United States. Available at: https://www.mathworks.com/help/simbio/index.html
Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F (2004) The gene controlling marijuana psychoactivity. J Biol Chem 279:39767–39774. https://doi.org/10.1074/jbc.m403693200
CAS
Article
PubMed
Google Scholar
Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharm Biotechnol 8:237–243. https://doi.org/10.2174/138920107781387456
CAS
Article
PubMed
Google Scholar
Smallbone K, Mendes P (2013) Large-scale metabolic models: from reconstruction to differential equations. Ind Biotechnol 9:179–184. https://doi.org/10.1089/ind.2013.0003
CAS
Article
Google Scholar
Taura F, Dono E, Sirikantaramas S, Yoshimura K, Shoyama Y, Morimoto S (2007) Production of Δ1-tetrahydrocannabinolic acid by the biosynthetic enzyme secreted from transgenic Pichia pastoris. Biochemical and Biophysical Research Communications 361:675–680. https://doi.org/10.1016/j.bbrc.2007.07.079
CAS
Article
PubMed
Google Scholar
Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583:2061–2066. https://doi.org/10.1016/j.febslet.2009.05.024
CAS
Article
PubMed
Google Scholar
Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van Der Weijden CC, Schepper M, Walsh MC, Bakker BM, Van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood terms of vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329. https://doi.org/10.1046/j.1432-1327.2000.01527.x
CAS
Article
PubMed
Google Scholar
Valliere MA, Korman TP, Woodall NB, Khitrov GA, Taylor RE, Baker D, Bowie JU (2019) A cell-free platform for the prenylation of natural products and application to cannabinoid production. Nat Commun 10:565. https://doi.org/10.1038/s41467-019-08448-y
CAS
Article
PubMed
Google Scholar
Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci 109:E111–E118. https://doi.org/10.1073/pnas.1110740109
Article
PubMed
Google Scholar
Wittig U, Kania R, Golebiewski M, Rey M, Shi L, Jong L, Algaa E, Weidemann A, Sauer-Danzwith H, Mir S, Krebs O, Bittkowski M, Wetsch E, Rojas I, Müller W (2012) SABIO-RK - database for biochemical reaction kinetics. Nucleic Acids Res 40:D790–D796. https://doi.org/10.1093/nar/gkr1046
CAS
Article
PubMed
Google Scholar
Yang X, Matsui T, Kodama T, Mori T, Zhou X, Taura F, Noguchi H, Abe I, Morita H (2016) Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa. FEBS J 283:1088–1106. https://doi.org/10.1111/febs.13654
CAS
Article
PubMed
Google Scholar
Yu AQ, Pratomo Juwono NK, Foo JL, Leong SSJ, Chang MW (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36–43. https://doi.org/10.1016/j.ymben.2015.12.005
CAS
Article
PubMed
Google Scholar
Zhao J, Bao X, Li C, Shen Y, Hou J (2016) Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1–11. https://doi.org/10.1007/s00253-016-7375-1, 100
Zirpel B, Stehle F, Kayser O (2015) Production of Δ9-tetrahydrocannabinolic acid from cannabigerolic acid by whole cells of Pichia (Komagataella) pastoris expressing Δ9-tetrahydrocannabinolic acid synthase from Cannabis sativa l. Biotechnol Lett 37:1869–1875. https://doi.org/10.1007/s10529-015-1853-x
CAS
Article
PubMed
Google Scholar
Zirpel B, Degenhardt F, Martin C, Kayser O, Stehle F (2017) Engineering yeasts as platform organisms for cannabinoid biosynthesis. J Biotechnol 259:204–212. https://doi.org/10.1016/j.jbiotec.2017.07.008
CAS
Article
PubMed
Google Scholar
Zirpel B, Degenhardt F, Zammarelli C, Wibberg D, Kalinowski J, Stehle F, Kayser O (2018a) Optimization of Δ9-tetrahydrocannabinolic acid synthase production in Komagataella phaffii via post-translational bottleneck identification. J Biotechnol 272–273:40–47. https://doi.org/10.1016/j.jbiotec.2018.03.008
Zirpel B, Kayser O, Stehle F (2018b) Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativa L. J Biotechnol. 284:17–26. https://doi.org/10.1016/j.jbiotec.2018.07.031