Skip to main content

Advertisement

Log in

Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Shewanella oneidensis MR-1 is a potent hydrogen producer in the deficiency of exogenous electron acceptors. The electron transfer pathway for hydrogen production remains unclear, although enzymes for hydrogen production have been identified in S. oneidensis MR-1. In this study, we investigated the electron transfer pathway from formate to hydrogen, given that formate is commonly a key chemical for bacterial hydrogen production. We revealed that two formate dehydrogenases FdhA1B1C1 and FdhA2B2C2, rather than FdnGHI, played a dominant role in formate-driven hydrogen production. Menaquinone was indispensable for the electron transfer from formate to hydrogen, which excluded the presence of formate hydrogen-lyase in S. oneidensis MR-1. A previously proposed formate dehydrogenase subunit HydC was identified as a menaquinone-binding subunit of [FeFe] hydrogenase HydAB, and the hydABC operon is conserved in bacteria living in diverse environments. A formate exporter FocA and transcriptional regulator FhlA were identified for their effect on formate metabolism and hydrogen production. FhlA positively affected the metabolism of formate and hydrogen by regulating the expression of fdhA2B2C2, fdnGHI, focA, and dld-II. Overall, the electron transfer pathway deciphered in this work will facilitate the improvement of biohydrogen production by S. oneidensis MR-1.

Key Points

• The electron transfer pathway from formate to hydrogen in MR-1 is deciphered.

• Menaquinone is indispensable for hydrogen production.

• A cytochrome b subunit transfers electrons from menaquinone to [FeFe] hydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26(22):2811–2817

    Article  CAS  Google Scholar 

  • Beyer L, Doberenz C, Falke D, Hunger D, Suppmann B, Sawers RG (2013) Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products. J Bacteriol 195(7):1428–1435

    Article  CAS  Google Scholar 

  • Dehio C, Meyer M (1997) Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli. J Bacteriol 179(2):538–540

    Article  CAS  Google Scholar 

  • Edwards RA, Keller LH, Schifferli DM (1998) Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207(2):149–157

    Article  CAS  Google Scholar 

  • Gorkiewicz G, Feierl G, Zechner R, Zechner EL (2002) Transmission of Campylobacter hyointestinalis from a pig to a human. J Clin Microbiol 40(7):2601–2605

    Article  Google Scholar 

  • Hong YG, Guo J, Sun GP (2008) Identification of an uptake hydrogenase for hydrogen-dependent dissimilatory azoreduction by Shewanella decolorationis S12. Appl Microbiol Biotechnol 80(3):517–524

    Article  CAS  Google Scholar 

  • Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192(13):3345–3351

    Article  CAS  Google Scholar 

  • Jormakka M, Tornroth S, Byrne B, Iwata S (2002) Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295(5561):1863–1868

    Article  Google Scholar 

  • Jormakka M, Byrne B, Iwata S (2003) Formate dehydrogenase--a versatile enzyme in changing environments. Curr Opin Struct Biol 13(4):418–423

    Article  CAS  Google Scholar 

  • Kaakoush NO, Castano-Rodriguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28(3):687–720

    Article  CAS  Google Scholar 

  • Kamei K, Hatanaka N, Asakura M, Somroop S, Samosornsuk W, Hinenoya A, Misawa N, Nakagawa S, Yamasaki S (2015) Campylobacter hyointestinalis isolated from pigs produces multiple variants of biologically active cytolethal distending toxin. Infect Immun 83(11):4304–4313

    Article  CAS  Google Scholar 

  • Kane AL, Brutinel ED, Joo H, Maysonet R, VanDrisse CM, Kotloski NJ, Gralnick JA (2016) Formate metabolism in Shewanella oneidensis generates proton motive force and prevents growth without an electron acceptor. J Bacteriol 198(8):1337–1346

    Article  CAS  Google Scholar 

  • Kanehisa M (2000) Post-genome informatics. Oxford University Press, Oxford

    Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176

    Article  CAS  Google Scholar 

  • Kreuzer HW, Hill EA, Moran JJ, Bartholomew RA, Yang H, Hegg EL (2014) Contributions of the NiFe -and FeFe -hydrogenase to H2 production in Shewanella oneidensis MR-1 as revealed by isotope ratio analysis of evolved H2. FEMS Microbiol Lett 352(1):18–24

    Article  CAS  Google Scholar 

  • Le Laz S, Kpebe A, Lorquin J, Brugna M, Rousset M (2014) H2-dependent azoreduction by Shewanella oneidensis MR-1: involvement of secreted flavins and both [Ni–Fe] and [Fe–Fe] hydrogenases. Appl Microbiol Biotechnol 98(6):2699–2707

    Article  Google Scholar 

  • McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA, Sargent F (2014) Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci U S A 111(38):3948–3956

    Article  Google Scholar 

  • Meshulam-Simon G, Behrens S, Choo AD, Spormann AM (2007) Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microbiol 73(4):1153–1165

    Article  CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321

    Article  CAS  Google Scholar 

  • Nealson KH, Scott J (2006) Ecophysiology of the genus Shewanella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, New York, pp 1133–1151

    Chapter  Google Scholar 

  • Nealson KH, Moser DP, Saffarini DA (1995) Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens. Appl Environ Microbiol 61(4):1551–1554

    Article  CAS  Google Scholar 

  • Ng CK, Tan TKC, Song H, Cao B (2013) Reductive formation of palladium nanoparticles by Shewanella oneidensis: role of outer membrane cytochromes and hydrogenases. RSC Adv 3(44):22498–22503

    Article  CAS  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–13

    Article  CAS  Google Scholar 

  • Pinchuk GE, Geydebrekht OV, Hill EA, Reed JL, Konopka AE, Beliaev AS, Fredrickson JK (2011) Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol 77(23):8234–8240

    Article  CAS  Google Scholar 

  • Rossmann R, Sawers G, Bock A (1991) Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 5(11):2807–2814

    Article  CAS  Google Scholar 

  • Schlensog V, Lutz S, Bock A (1994) Purification and DNA-binding properties of FHLA, the transcriptional activator of the formate hydrogenlyase system from Escherichia coli. J Biol Chem 269(30):19590–19596

    CAS  PubMed  Google Scholar 

  • Self WT, Hasona A, Shanmugam KT (2001) N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli. Microbiology 147(11):3093–3104

    Article  CAS  Google Scholar 

  • Shi L, Belchik SM, Plymale AE, Heald S, Dohnalkova AC, Sybirna K, Bottin H, Squier TC, Zachara JM, Fredrickson JK (2011) Purification and characterization of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1. Appl Environ Microbiol 77(16):5584–5590

    Article  CAS  Google Scholar 

  • Sieber JR, Le HM, McInerney MJ (2014) The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ Microbiol 16(1):177–188

    Article  CAS  Google Scholar 

  • Skibinski DA, Golby P, Chang YS, Sargent F, Hoffman R, Harper R, Guest JR, Attwood MM, Berks BC, Andrews SC (2002) Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184(23):6642–6653

    Article  CAS  Google Scholar 

  • Stams AJM, de Bok FAM, Plugge CM, van Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8(3):371–382

    Article  CAS  Google Scholar 

  • Suppmann B, Sawers G (1994) Isolation and characterization of hypophosphite--resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 11(5):965–982

    Article  CAS  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(1):296–303

    Article  Google Scholar 

  • Wu C, Cheng YY, Yin H, Song XN, Li WW, Zhou XX, Zhao LP, Tian LJ, Han JC, Yu HQ (2013) Oxygen promotes biofilm formation of Shewanella putrefaciens CN32 through a diguanylate cyclase and an adhesin. Sci Rep 3:1945

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science of Foundation of China (31670126).

Author information

Authors and Affiliations

Authors

Contributions

CW and JX conceived of and designed study and analyzed data. JX, DC, FC, and MC performed most of experiments. QW and XS helped to analyze chemicals. XG performed sequence analysis. CW and XG wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Chao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 396 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Chan, D., Guo, X. et al. Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1. Appl Microbiol Biotechnol 104, 5579–5591 (2020). https://doi.org/10.1007/s00253-020-10608-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10608-w

Keywords

Navigation