Skip to main content

Ecophysiology of the Genus Shewanella

  • SECTION 3.3 Gamma Subclass
  • Reference work entry
  • First Online:
The Prokaryotes

Introduction

The genus Shewanella is comprised of more than 20 species inhabiting a wide range of environments including spoiled food, oil field wastes, redox interfaces in marine and freshwater, cold waters and sediments of the deep sea, and mesophilic ones all around the planet. Much of the recent interest in the shewanellae stems from their almost notorious abilities in the area of anaerobic respiration; these bacteria appear to be able to use nearly any electron acceptor more electronegative than sulfate, including oxygen. However, the genus is much more than just a group of respiratory specialists, as will be discussed here.

As with many contemporary genera, the Shewanella have experienced a rocky road to their present status, as evidenced by the species S. putrefaciens. Originally isolated as an active agent in food spoilage (Derby and Hammer, 1932), this organism was first called “Achromobacter putrefaciens,” then Pseudomonas putrefaciens (Shewan et al., 1960), Alteromonas...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aguilar, C., and K. H. Nealson. 1993 Mn reduction in Oneida Lake, NY: Estimates of spatial and temporal Mn flux Can. J. Fish. Aquat. Sci. 51 185–196

    Google Scholar 

  • Akagawa-Matsushita, M., T. Itoh, Y. Katayama, H. Kuraishi, and K. Yamasato. 1992 Isoprenoid quinine composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas, and Shewanella species J. Gen. Microbiol. 138 2275–2281

    CAS  Google Scholar 

  • Aller, R. C. 1990 Bioturbation and manganese cycling in hemipelagic sediments Phil. Trans. R. Soc. Lond. A 331 51–68

    CAS  Google Scholar 

  • Aller, R. C., J. Aller, N. Blair, J. Mackin, and P. Rude. 1991 Biogeochemical processes in Amazon shelf sediments Oceanography April 27–32

    Google Scholar 

  • Arnold, R., T. DiChristina, and M. Hoffman. 1988 Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200 Biotechnol. Bioengin. 32 1081–1096

    CAS  Google Scholar 

  • Beliaev, A. S., and D. A. Saffarini. 1998 Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction J. Bacteriol. 180 6292–6297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beliaev, A. S., D. A. Saffarini, J. L. McLaughlin, and D. Hunnicutt. 2001 MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1 Molec. Microbiol. 39 722–730

    CAS  Google Scholar 

  • Beliaev, A. S., D. K. Thompson, M. W. Fields, L. Wu, D. P. Lies, K. H. Nealson, and J. Zhou. 2002a Microarray transcription profiling of a Shewanella oneidensis etrA mutant J. Bacteriol. 184 4612–4616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beliaev, A. S., D. K. Thompson, T. Khare, H. Lim, C. C. Brandt, G. Li, A. E. Murray, J. F. Heidelberg, C. S. Giometti, J. Yates 3rd, K. H. Nealson, J. M. Tiedje, and J. Zhou. 2002b Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors OMICS 6 39–60

    CAS  PubMed  Google Scholar 

  • Bjerrum, C. J., and D. E. Canfield. 2002 Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides Nature 417 159–162

    CAS  PubMed  Google Scholar 

  • Bowman, J. P., S. A. McCammon, D. S. Nichols, J. H. Skerratt, S. M. Rea, P. D. Nichols, and T. A. McMeekin. 1997 Shewanella gelidimarina sp. Nov. and Shewanella frigidimarina sp. Nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20ω3) and grow anaerobically by dissimilatory Fe(III) reduction Int. J. Syst. Bacteriol. 47 1040–1047

    CAS  PubMed  Google Scholar 

  • Bowman, J. P., S. M. Rea, S. A. McCammon, and T. A. McMeekin. 2000 Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica Environ. Microbiol. 2 227–237

    CAS  PubMed  Google Scholar 

  • Bozal, N. M., J. Montes, E. Tudela, F. Jiménez, and J. Guinea. 2002 Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolted from Antarctic coastal areas Int. J. Syst. Evol. Microbiol. 52 195–205

    CAS  PubMed  Google Scholar 

  • Brettar, I., and M. Höfle. 1993 Nitrous oxide producing heterotrophic bacteria from the water column of the central Baltic: Abundance and molecular identification Mar. Ecol. Prog. Ser. 94 253–265

    CAS  Google Scholar 

  • Brown, M. V., and J. P. Bowman. 2001 A molecular phylogenetic survey of sea-ice microbial communities FEMS Microbiol. Ecol. 35 267–275

    CAS  PubMed  Google Scholar 

  • Burdige, D. J., S. P. Dhakar, and K. H. Nealson. 1992 Effects of Mn oxide mineralogy on microbial and chemical Mn reduction Geomicrobiol. J. 10 27–48

    CAS  Google Scholar 

  • Caccavo, F., R. P. Blakemore, and D. R. Lovley. 1992 A hydrogen-oxidizing, Fe(III) reducing microorganism from the Great Bay estuary, NH Appl. Environ. Microbiol. 58 3211–3216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caccavo, F. Jr. 1999 Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide Appl. Environ. Microbiol. 65 5017–5022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canfield, D. E., B. B. Jörgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Thamdrup, J. W. Hansen, L. B. Nieldsen, and P. O. J. Hall. 1993a Pathways of organic carbon oxidation in three continental margin sediments Mar. Geol. 133 27–40

    Google Scholar 

  • Canfield, D. E., B. Thamdrup, and J. W. Hansen. 1993b The anaerobic of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction Geochim. Cosmochim. Acta 57 3867–3885

    CAS  PubMed  Google Scholar 

  • Das, A., and F. Caccavo. 2000 Dissimilatory iron oxide reduction by S. algae BrY requires adhesion Curr. Microbiol. 40 344–347

    CAS  PubMed  Google Scholar 

  • Das, A., and F. Caccavo. 2001 Adhesion of dissimilatory Fe(III) reducing bacteria S. algae to crystalline Fe(III) oxides Curr. Microbiol. 42 151–154

    CAS  PubMed  Google Scholar 

  • Derby, H. A., and B. W. Hammer. 1931 Bacteriology of butter. IV: Bacteriological studies of surface taint butter Iowa Agric. Exp. Stn. Res. Bull. 145 387–416

    CAS  Google Scholar 

  • DiChristina, T., R. G. Arnold, M. E. Lidstrom, and M. R. Hoffmann. 1988 Dissimilative Fe(III) reduction by the marine eubactterium Altermomoas putrefaciens strain 200 Water Sci. Technol. 20 69–79

    CAS  Google Scholar 

  • DiChristina, T., and E. DeLong. 1993 Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron-and manganese-reducing bacterium Shewanella putrefaciens Appl. Environ. Microbiol. 59 4152–4160

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiChristina, T. J., C. M. Moore, and C. A. Haller. 2002 Dissimilatory Fe(III) and Mn(IV) reduction by Shewanella putrefaciens requires ferE, a homolog of the pulE(gspE) type II protein secretion gene J. Bacteriol. 184 142–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domínguez, H., B. F. Vogel, L. Gram, S. Hoffman, and S. Schabel. 1996 Shewanella algae bacteremia in two patients with lower leg ulcers Clin. Infect. Dis. 22 1036–1039

    PubMed  Google Scholar 

  • Dong, H., J. K. Fredrickson, D. W. Kennedy, J. M. Zachara, R. K. Kukkadapu, and T. C. Onstott. 2000 Mineral transformation associated with the microbial reduction of magnetite Chem. Geology 169 299–318

    CAS  Google Scholar 

  • Ferrenkopf, A. M., M. E. Dollhopf, S. N. Chadhain, G. W. Luther 3rd, and K. H. Nealson. 1997 Iodate reduction by bacteria in the Arabian Sea Mar. Chem. 57 347–354

    Google Scholar 

  • Field, S. J., P. S. Dobbin, M. R. Cheesman, N. J. Watmough, A. J. Thomson, and D. J. Richardson. 2000 Purification and magneto-optical spectroscopic characterization of cytoplasmic membrane and outer membrane multiheme c-type cytochromes from Shewanella frigidimarina NCIMB400 J. Biol. Chem. 275 8515–8522

    CAS  PubMed  Google Scholar 

  • Fredrickson, J. K., and Y. A. Gorby. 1996 Environmental processes mediated by iron-reducing bacteria Curr. Opin. Biotechnol. 7 287–294

    CAS  PubMed  Google Scholar 

  • Fredrickson, J. K., J. M. Zachara, D. W. Kennedy, M. C. Duff, Y. A. Gorby, S. W. Li, and K. M. Krupka. 2000 Reduction of U(VI) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium Geochim. Cosmochim. Acta 64 3085–3098

    CAS  Google Scholar 

  • Glasauer, S., J. Langley, and T. J. Beveridge. 2002 Intracellular iron minerals in a dissimilatory iron-reducing bacterium Science 2002 295 117–119

    CAS  Google Scholar 

  • Gon, S., J.-C. Patte, J.-P. Dos Santos, and V. Mejean. 2002 Reconstitution of the trimethylamine oxide reductases regulatory elements of Shewanella oneidensis in Escherichia coli J. Bacteriol. 184 1262–1269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon, E. H. J., S. L. Pealing, S. K. Chapman, B. B. Ward, and G. A. Reid. 1998 Physiological function and regulation of flavocytochrome c3, the soluble fumarate reductases from Shewanella putrefaciens NCIMB 400 Microbiology 144 937–945

    CAS  PubMed  Google Scholar 

  • Gordon, E. H. J., A. D. Pike, A. E. Hill, P. M. Cuthbertson, S. K. Chapman, and G. A. Reid. 2000 Identification and characterization of a novel cytochrome c3 from Shewanella frigidimarina that is involved in Fe(III) respiration Biochem. J. 349 153–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gram, L., G. Trolle, and H. H. Huss. 1987 Detection of specific spoilage bacteria from fish stored at low (0°C) and high (20°C) temperatures Int. J. Food Microbiol. 4 65–72

    Google Scholar 

  • Gram, L., C. Wedell-Neergaard, and H. H. Huss. 1990 The bacteriology of fresh and spoiling Lake Victoria Nile perch Int. J. Food Microbiol. 10 303–316

    CAS  PubMed  Google Scholar 

  • Gram, L. 1993 Inhibitory effect against pathogenic and spoilage bacteria of Pseudomonas strains isolated from spoiled and fresh fish Appl. Environ. Microbiol. 59 2197–2203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gram, L. 1994 Siderophore-mediated iron sequestering by Shewanella putrefaciens Appl. Environ. Microbiol. 60 2132–2136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gram, L., A. Bundvad, J. Melchiorsen, C. Johansen, and B. Fonnesbech Vogel. 1999 Occurrence of Shewanella algae in Danish Coastal water and effects of water temperature and culture conditions on its survival Appl. Environ. Microbiol. 65 3896–3900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heidelberg, J. F., I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, R. Seshadri, N. Ward, B. Methe, R. A. Clayton, T. Meyer, A. Tsapin, J. Scott, M. Beanan, L. Brinkac, S. Daugherty, R. T. DeBoy, R. J. Dodson, A. Scott Durkin, D. H. Haft, J. F. Kolonay, R. Madupu, J. D. Peterson, L. A. Umayam, O. White, A. M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T. R. Utterback, L. A. McDonald, T. V. Feldblyum, H. O. Smith, J. Craig Venter, K. H. Nealson, and C. M. Fraser. 2002 Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis Nature Biotechnology 20 1118–1123

    CAS  PubMed  Google Scholar 

  • Hernandez, M. E., and D. K. Newman. 2001 Extracellular electron transfer Cell. Molec. Life Sci. 58 1562–1571

    CAS  PubMed  Google Scholar 

  • Hines, M. E., J. Faganeli, and R. Planinc. 1997 Sedimentary anaerobic microbial biogeochemistry in the Gulf of Trieste, northern Adriatic Sea: Influences of bottom water oxygen depletion Biogeochemistry 39 65–86

    CAS  Google Scholar 

  • Höfle, M., and I. Brettar. 1996 Genotyping of heterotrophic bacteria from the central Baltic Sea by use of low-molecular weight RNA profiles Appl. Environ. Microbiol. 62 1383–1390

    PubMed  PubMed Central  Google Scholar 

  • Holt, H. M., P. Sogaard, and B. Gabro-Hansen. 1997 Ear infections with Shewanella alga. A bacteriologic, clinical and epidemiologic study of 67 cases Clin. Microbiol. Infect. 3 329–334

    PubMed  Google Scholar 

  • Iwata, M., K. Tateda, T. Matsumoto, N. Furuya, S. Mizuiri, and K. Yamaguchi. 1999 Primary Shewanella alga septicemia in a patient on hemodialysis J. Clin. Microbiol. 37 2104–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, M. J., B. M. Tebo, P. Baumann, M. Mandel, and K. H. Nealson. 1980 Characterization of Alteromonas hanedai, a non-fermentative luminous species of marine origin Curr. Microbiol. 3 311–315

    Google Scholar 

  • Jorgensen, B. R., and H. H. Huss. 1989 Growth and activity of Shewanella putrefaciens isolated from spoiling fish Int. J. Food Microbiol. 9 51–62

    CAS  PubMed  Google Scholar 

  • Kato, C., L. Li, Y. Nogi, Y. Nakamura, J. Tamaoka, and K. Horikoshi. 1998 Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters Appl. Environ. Microbiol. 64 1510–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato, C., and Y. Nogi. 2001 Correlation between phylogenetic structure and function: Examples from deep-sea Shewanella FEMS Microbiol. Ecol. 35 223–230

    CAS  PubMed  Google Scholar 

  • Khashe, S., and J. M. Jauda. 1998 Biochemical and pathogenic properties of Shewanella alga and Shewanella putrefaciens J. Clin. Microbiol. 36 149–155

    Google Scholar 

  • Kim, J. H., R. A. Cooper, K. E. Welty-Wolf, L. J. Harrell, P. Zwalyk, and M. E. Klotman. 1989 Pseudomonas putrefaciens bacteremia Rev. Infect. Dis. 11 97–104

    CAS  PubMed  Google Scholar 

  • Klüber, H. D., and R. Conrad. 1993 Ferric iron-reducing Shewanella putrefaciens and N2-fixing Bradyrhizobium japonicum with uptake hydrogenase are unable to oxidize atmospheric H2 FEMS Microbiol. Lett. 111 337–342

    Google Scholar 

  • Kostka, J. E., and K. H. Nealson. 1995a Dissolution and reduction of magnetite by bacteria Environ. Sci. Technol. 29 2535–2540

    CAS  PubMed  Google Scholar 

  • Kostka, J. E., G. W. Luther 3rd, and K. H. Nealson. 1995b Chemical and biological reduction of Mn(III)-pyrophosphate complexes: Potential importance of dissolved Mn(III) as an environmental oxidant Geochim. Cosmochim. Acta 59 4985–4999

    Google Scholar 

  • Kostka, J. E., K. H. Nealson, J. Wu, and J. W. Stucki. 1996 Reduction of the structural Fe(III) in smectite by a pure culture of the Fe-reducing bacterium Shewanella putrefaciens strain MR-1 Clays Clay Min. 44 522–529

    CAS  Google Scholar 

  • Kostka, J., and K. H. Nealson. 1997 Isolation, cultivation, and characterization of iron-and manganese-reducing bacteria In: R. Burlage (Ed.) Techniques in Microbial Ecology 58–78

    Google Scholar 

  • Kostka, J. E., D. E. Canfield, and B. Thamdrup. 1999a Rates and pathways of carbon oxidation in permanently cold Arctic sediments Mar. Ecol. Progr. Ser. 180 7–21

    CAS  Google Scholar 

  • Kostka, J. E., E. Haefele, R. Viehweger, and J. W. Stucki. 1999b Respiration and dissolution of iron(III)-containing clay minerals by bacteria Environ. Sci. Technol. 33 3127–3133

    CAS  Google Scholar 

  • Kostka J. E., J. Wu, K. H. Nealson, and J. W. Stucki. 1999c The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals Geochim. Geochos. Acta 63 3705–3713

    CAS  Google Scholar 

  • Krause, B., and K. H. Nealson. 1997 Physiology and enzymology involved in denitrification by Shewanella putrefaciens Appl. Environ. Microbiol. 63 2613–2618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen, I., B. Little, K. H. Nealson, R. Ray, A. Stone, and J. Tian. 1998 Manganite reduction by S. putrefaciens MR-4 Am. Mineral. 83 1564–1572

    CAS  Google Scholar 

  • Ledyard, K. M., and A. Butler. 1997 Structure of putrebactin, a new dihydroxamate siderophore produced by Shewanella putrefaciens J. Bioinorg. Chem. 2 93–97

    CAS  Google Scholar 

  • Lee, J. V., D. M. Gibson, and J. M. Shewan. 1977 A numerical taxonomic study of some Pseudomonas-like marine bacteria J. Gen. Microbiol. 98 439–451

    Google Scholar 

  • Leonardo, M. R., D. P. Moser, E. Barbieri, C. A. Brantner, B. J. MacGregor, B. J. Paster, E. Stackebrandt, and K. H. Nealson. 1999 Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei Int. J. Syst. Bacteriol. 49 1341–1351

    CAS  PubMed  Google Scholar 

  • Levin, R. E. 1968 Detection and incidence of specific species of spoilage bacteria on fish Appl. Microbiol. 16 1734–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan. 1989 Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens Appl. Environ. Microbiol. 55 700–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D. R., J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward. 1996 Humic substances as a mediator for microbially catalyzed metal reduction Nature 382 445–448

    CAS  Google Scholar 

  • Lovley, D. R. 2000 Fe(III) and Mn(IV) reduction In: D. R. Lovley (Ed.) Environmental Microbe-Metal Interactions ASM Press Washington DC 3–30

    Google Scholar 

  • Lower, S. K., M. F. Hochella Jr., and T. J. Beveridge. 2001 Bacterial recognition of mineral surfaces: Nanoscale interactions between Shewanella and α-FeOOH Science 292 1360–1363

    CAS  PubMed  Google Scholar 

  • Macdonell, M. T., and R. R. Colwell. 1985 Phylogeny of the Vibrionaceae, and recommendation for two genera, Listonella and Shewanella Syst. Appl. Microbiol. 6 171–182

    CAS  Google Scholar 

  • MacGregor, B. J., D. P. Moser, K. H. Nealson, and D. A. Stahl. 1997 Crenarchaeota in Lake Michigan sediments Appl. Environ. Microbiol. 63 1178–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker, P. R. Saxman, R. J. Farris, G. G. Garrity, G. J. Olsen, T. M. Schmidt, and J. M. Tiedje. 2001 The RDP-II (Ribosomal Database Project) Nucl. Acids Res. 29 173–174

    CAS  PubMed  Google Scholar 

  • Maier, T. M., and C. R. Meyers. 2001 Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: Reassessment of the role of EtrA J. Bacteriol. 183 4918–4926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makemson, J. C., N. R. Fulayfil, W. Landry, L. M. Van Ert, C. F. Wimpee, E. A. Widder, and J. F. Case. 1997 Shewanella woodyi sp.nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea Int. J. Syst. Bacteriol. 47 1034–1039

    CAS  PubMed  Google Scholar 

  • Moser, D., and K. H. Nealson. 1996 Growth of Shewanella putrefaciens on elemental sulfur as an electron acceptor Appl. Environ. Microbiol. 62 2100–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray, A., D. Lies, G. Li, K. Nealson, J. Zhou, and J. M. Tiedje. 2001 DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes Proc. Natl. Acad. Sci. USA 98 9853–9858

    CAS  PubMed  Google Scholar 

  • Myers, C. R., and K. H. Nealson. 1988 Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor Science 240 1319–1321

    CAS  PubMed  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1992a Fumarate reductases is a soluble enzyme in anaerobically grown Shewanella putrefaciens MR-1 FEMS Microbiol. Lett. 98 13–20

    CAS  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1992b Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1 J. Bacteriol. 174 3429–3438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1993a Ferric reductases is associated with the membranes of anaerobically grown Shewanella putrefaciens FEMS Microbiol. Lett. 108 15–22

    CAS  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1993b Role of menaquinone in the reduction of fumarate, nitrate, iron(III) and manganese (IV) by Shewanella putrefaciens MR-1 FEMS Microbiol. Lett. 114 215–222

    CAS  Google Scholar 

  • Myers, C. R., and J. M. Myers. 1998 Isolation and sequence of omcA, a gene encoding a decaheme outer membrane cytochrome c of Shewanella putrefaciens MR-1, and detection of omcA homologs in other strains of Shewanella putrefaciens Biochim. Biophys. Acta 1373 237–251

    CAS  PubMed  Google Scholar 

  • Myers, J. M., and C. R. Myers. 2001 Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide Appl. Environ. Microbiol. 67 260–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakasone, K., A. Ikegami, C. Kato, R. Usami, and K. Horikoshi. 1999 Analysis of cis-elements upstream of the pressure-regulated operon in the deep sea barophilic bacterium Shewanella violacea strain DSS12 FEMS Microbiol. Lett. 176 351–356

    CAS  Google Scholar 

  • Nealson, K. H., C. R. Myers, and B. Wimpee. 1991 Isolation and identification of Mn-reducing bacteria and estimates of microbial Mn reducing potential in the Black Sea Deep Sea Res. 38 907–920

    Google Scholar 

  • Nealson, K. H., and D. A. Saffarini. 1995a Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation Ann. Rev. Microbiol. 48 311–343

    Google Scholar 

  • Nealson, K. H., D. P. Moser, and D. A. Saffarini. 1995b Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens Appl. Environ. Microbiol. 61 1551–1554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nealson, K. H., A. Belz, and B. McKee. 2002 Breathing metals as a way of life: Geobiology in action Ant. v. Leeuwenhoek 81(1–4) 215–222

    CAS  Google Scholar 

  • Newman, D. K., and R. Kolter. 2000 A role for excreted quinones in extracellular electron transfer Nature 405 94–97

    CAS  PubMed  Google Scholar 

  • Newman, D. K. 2001 How bacteria respire minerals Science 292 1312–1314

    CAS  PubMed  Google Scholar 

  • Nichols, D. S., J. Olley, H. Garda, R. R. Brenner, and T. A. McMeekin. 2000 Effect of temperature and salinity stress on growth and lipid composition of Shewanella gelidimarina Appl. Enviorn. Microbiol. 66 2422–2429

    CAS  Google Scholar 

  • Nogi, Y., C. Kato, and K. Horikoshi. 1998 Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species Arch. Microbiol. 170 331–338

    CAS  PubMed  Google Scholar 

  • Nozue, H., T. Hayashi, Y. Hashimoto, T. Ezaki, K. Hamazaki, K. Ohwada, and Y. Terawaki. 1992 Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al., 1990. 335 Int. J. Syst. Bacteriol. 42 628–634

    CAS  PubMed  Google Scholar 

  • Obuekwe, C., W. Westlake, and F. Cook. 1981 Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil Can. J. Microbiol. 27 692–697

    CAS  PubMed  Google Scholar 

  • Obuekwe, C., and W. Westlake. 1982 Effect of reducible compounds (potential electron acceptors) on reduction of ferric iron by Pseudomonas species Microbios. Lett. 19 57–62

    CAS  Google Scholar 

  • Ozawa, K., A. I. Tsapin, K. H. Nealson, M. A. Cusanovich, and H. Akutsu. 2000 Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c3 in Shewanella oneidensis MR-1 Appl. Environ. Microbiol. 66 4168–4171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa, K., F. Yasukawa, Y. Fujiwara, and H. Akutsu. 2001 A simple, rapid, and highly efficient gene expression system for multiheme cytochromes c Biosci. Biotechnol. Biochem. 65 185–189

    CAS  PubMed  Google Scholar 

  • Perry, K. A., J. E. Kostka, G. W. Luther 3rd, and K. H. Nealson. 1993 Mediation of sulfur speciation by a Black Sea facultative anaerobe Science 259 801–803

    CAS  PubMed  Google Scholar 

  • Petrovskis, E. A., T. M. Vogel, and P. Adriaens. 1994 Effects of electron acceptors and donors on transformation of tetrachloromethane by Shewanella putrefaciens MR-1 FEMS Microbiol. Lett. 121 357–364

    CAS  PubMed  Google Scholar 

  • Picardel, F. W., R. G. Arnold, H. Couch, A. M. Little, and M. E. Smith. 1993 Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200 Appl. Environ. Microbiol. 59 3763–3770

    Google Scholar 

  • Reid, G. A., and E. H. J. Gordon. 1999 Phylogeny of marine and freshwater Shewanella: Reclassification of Shewanella putrefaciens NCIMB 400 as Shewanella frigidimarina Int. J. Syst. Bacteriol. 49 189–191

    PubMed  Google Scholar 

  • Ringø, E., E. Stenberg, and A. R. Strøm. 1984 Amino acid and lactate catabolism in trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735 Appl. Environ. Microbiol. 47 1084–1089

    PubMed  PubMed Central  Google Scholar 

  • Roden, E. E., and R. G. Wetzel. 1996a Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments Limnol. Oceanogr. 41 1733–1748

    CAS  Google Scholar 

  • Roden, E., and J. Zachara. 1996b Microbial reduction of crystalline Fe oxides: Influence of oxide surface area and potential for cell growth Environ. Sci. Technol. 30 1618–1628

    CAS  Google Scholar 

  • Saffarini, D. A., T. J. DiChristina, D. Bermudes, and K. H. Nealson. 1994 Anaerobic respiration of Shewanella putrefaciens requires both chromosomal and plasmid-borne genes FEMS Microbiol. Lett. 119 271–278

    CAS  Google Scholar 

  • Saffarini, D. A., S. L. Blumerman, and K. J. Mansoorabadi. 2002 Role of menaquiinones in Fe(III) reduction by membrane fractions of Shewanella putrefaciens J. Bacteriol. 184 846–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samuelsson, M. 1985 Dissimilatory nitrate reduction to nitrite, nitrous oxide, and ammonium by Pseudomonas putrefaciens Appl. Environ. Microbiol. 50 812–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satomi, M., H. Oikawa, and Y. Yano. 2003 Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella saire sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea animal intestines, IJSEM Papers Int. J. Syst. Evol. Microbiol. 53 491–499

    CAS  PubMed  Google Scholar 

  • Schwertmann, U., and R. M. Cornell. 1991 Iron Oxides in the Laboratory: Preparation and Characterization Weinheim New York NY 204

    Google Scholar 

  • Scott, J. H., and K. H. Nealson. 1994 A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens J. Bacteriol. 176 3408–3411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Semple, K., and D. W. S. Westlake. 1987 Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids Can. J. Microbiol. 33 366–371

    CAS  Google Scholar 

  • Shewan, J. M., G. Hobbs, and W. Hodgkiss. 1960 A determinative scheme for the identification of certain genera of Gram-negative bacteria with special reference to Pseudomonadaceae J. Appl. Bacteriol. 23 379–390

    Google Scholar 

  • Stein, L., M. LaDuc, T. Grundl, and K. H. Nealson. 2001 Bacterial and Archaeal populations associated with freshwater ferromanganese micronodules and sediments Environ. Microbiol. 3 10–18

    CAS  PubMed  Google Scholar 

  • Stenstrom, I. M., and G. Molin. 1990 Classification of spoilage flora of fish, with special reference to Shewanella putrefaciens J. Appl. Bacteriol. 68 601–618

    CAS  PubMed  Google Scholar 

  • Stumm, W., and J. J. Morgan. 1995 Aquatic Chemistry, 3rd ed John Wiley New York NY

    Google Scholar 

  • Subasinghe, R. P., and M. Shariff. 1992 Multiple bacteriosis, with special reference to spoilage bacterium Shewanella putrefaciens, in cage-cultured Barramundi Perch in Malaysia J. Aquat. Anim. Health. 4 309–311

    Google Scholar 

  • Tamegai, H., C. Kato, and K. Horikoshi. 1998 Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. Strain DSS12 J. Biochem. Mol. Biol. Biophys. 1 213–220

    CAS  Google Scholar 

  • Taratus, E., S. Eubanks, and T. DiChristina. 2000 Design and application of a rapid screening technique for isolation of selenite reduction-deficient mutants of Shewanella putrefaciens Geomicrobiol. J. 17 163–178

    Google Scholar 

  • Teece, M., M. Fogel, M. Dollhopf, and K. Nealson. 1999 Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions Org. Geochem. 30 1571–1579

    CAS  Google Scholar 

  • Thamdrup, B., and D. E. Canfield. 1996 Pathways of carbon oxidation in continental margin sediments off central Chile Limnol. Oceanogr. 41 1629–1650

    CAS  PubMed  Google Scholar 

  • Thamdrup, B. 2000a Bacterial manganese and iron reduction in aquatic sediments Adv. Microb. Ecol. 16 41–84

    CAS  Google Scholar 

  • Thamdrup, B., R. Rossello-Mora, and R. Amann. 2000b Microbial manganese and sulfate reduction in Black Sea shelf sediments Appl. Environ. Microbiol. 66 2888–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, D. K., A. S. Beliaev, C. S. Giometti, S. L. Tollaksen, T. Khare, D. P. Lies, K. H. Nealson, H. Lim, J. Yates, C. C. Brandt, J. M. Tiedje, and J. Zhou. 2002 Transcription and proteomic analysis of a ferric uptake regulator (Fur) mutant of Shewanella oneidensis: Possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress Appl. Environ. Microbiol. 68 881–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urrutia, M. M., E. E. Roden, J. K. Fredrickson, and J. M. Zachara. 1998 Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory iron-reducing bacterium Shewanella alga Geomicrobiol. J. 15 269–291

    CAS  Google Scholar 

  • Urrutia, M. M., E. E. Roden, and J. M. Zachara. 1999 Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides Environ. Sci. Technol. 33 4022–4028

    CAS  Google Scholar 

  • Venkateswaran, K., M. E. Dollhopf, R. Aller, E. Stackebrandt, and K. H. Nealson. 1998 S. amazonensis sp. nov., a metal-reducing facultative anaerobe from Amazonian shelf muds Int. J. Syst. Bacteriol. 48 965–972

    CAS  PubMed  Google Scholar 

  • Venkateswaran, K., D. Moser, M. Dollhopf, D. Lies, D. Saffarini, B. MacGregor, D. Ringelberg, D. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, and K. H. Nealson. 1999 Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov Int. J. Syst. Bacteriol. 49 705–724

    CAS  PubMed  Google Scholar 

  • Vogel, B. F., H. M. Holt, P. Gerner-Smidt, A. Bundvad, P. Sogaard, and L. Gram. 2000 Homogeneity of Danish environmental and clinical isolates of Shewanella algae Appl Environ Microbiol. 66(1) 443–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wade, R., and T. DiChristina. 2000 Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens FEMS Microbiol. Lett. 184 143–148

    CAS  PubMed  Google Scholar 

  • Wildung, R. E., Y. A. Gorby, K. M. Krupka, N. J. Hess, S. W. Li, A. E. Plymale, J. P. McKinley, and J. K. Fredrickson. 2000 Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens Appl. Environ. Microbiol. 66 2451–2460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, M., K. Nakasone, H. Tamegai, C. Kato, R. Usami, and K. Horikoshi. 2000 Pressure regulation of soluble cytochromes c in a deep-sea piezophilic bacterium, Shewanella violacea J. Bacteriol. 182 2945–2952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ziemke, F., I. Brettar, and M. G. Höfle. 1997 Stability and diversity of the genetic structure of a Shewanella putrefaciens population in the water column of the central Baltic Aquat. Microb. Ecol. 13 63–74

    Google Scholar 

  • Ziemke, F., M. G. Höfle, J. Lalucat, and R. Rossello-Mora. 1998 Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov Int. J. Syst. Bacteriol. 48 179–186

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nealson, K.H., Scott, J. (2006). Ecophysiology of the Genus Shewanella. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30746-X_45

Download citation

Publish with us

Policies and ethics