Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 12, pp 5065–5076 | Cite as

New concepts in anaerobic digestion processes: recent advances and biological aspects

  • Antonio Castellano-Hinojosa
  • Caterina Armato
  • Clementina Pozo
  • Alejandro González-Martínez
  • Jesús González-López
Mini-Review

Abstract

Waste treatment and the simultaneous production of energy have gained great interest in the world. In the last decades, scientific efforts have focused largely on improving and developing sustainable bioprocess solutions for energy recovery from challenging waste. Anaerobic digestion (AD) has been developed as a low-cost organic waste treatment technology with a simple setup and relatively limited investment and operating costs. Different technologies such as one-stage and two-stage AD have been developed. The viability and performance of these technologies have been extensively reported, showing the supremacy of two-stage AD in terms of overall energy recovery from biomass under different substrates, temperatures, and pH conditions. However, a comprehensive review of the advantages and disadvantages of these technologies is still lacking. Since microbial ecology is critical to developing successful AD, many studies have shown the structure and dynamics of archaeal and bacterial communities in this type of system. However, the role of Eukarya groups remains largely unknown to date. In this review, we provide a comprehensive review of the role, abundance, dynamics, and structure of archaeal, bacterial, and eukaryal communities during the AD process. The information provided could help researchers to select the adequate operational parameters to obtain the best performance and biogas production results.

Keywords

Anaerobic digestion One stage vs two stage Microbiome Archaea, Bacteria, and Eukarya communities 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Achinas S, Achinas V, Euverink GJ (2017) A technological overview of biogas production from biowaste. Engineering 3:299–307.  https://doi.org/10.1016/J.ENG.2017.03.002 CrossRefGoogle Scholar
  2. Ağdağ ON, Sponza DT (2007) Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J Hazard Mater 140:75–85.  https://doi.org/10.1016/J.JHAZMAT.2006.06.059 PubMedCrossRefGoogle Scholar
  3. Akuzawa M, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Env Microbiol 61:595–605.  https://doi.org/10.1007/s00248-010-9788-1 CrossRefGoogle Scholar
  4. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. PNAS 105:11512–11519.  https://doi.org/10.1073/pnas.0801925105 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amani T, Nosrati M, Sreekrishnan TR, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—a review. Environ Rev 18:255–278.  https://doi.org/10.1139/A10-011 CrossRefGoogle Scholar
  6. Angelidaki I, Ellegaard L, Ahring BK (2003) Applications of the anaerobic digestion process. In: Scheper T (ed) Biomethanation II. Advances in biochemical engineering/biotechnology. Springer, Berlin, Heidelberg, Berlin, pp 1–33Google Scholar
  7. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781.  https://doi.org/10.1016/J.PECS.2008.06.002 CrossRefGoogle Scholar
  8. Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568.  https://doi.org/10.1016/J.WATRES.2006.12.036 PubMedCrossRefGoogle Scholar
  9. Bayr S, Rantanen M, Kaparaju P, Rintala J (2012) Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes. Bioresour Technol 104:28–36.  https://doi.org/10.1016/j.biortech.2011.09.104 PubMedCrossRefGoogle Scholar
  10. Bergland WH, Dinamarca C, Toradzadegan C, Nordgard ASR, Bakke I, Bakke R (2015) High rate manure supernatant digestion. Water Res 76:1–9.  https://doi.org/10.1016/j.watres.2015.02.051 PubMedCrossRefGoogle Scholar
  11. Beyene HD, Werkneh AA, Ambaye TG (2018) Current updates on waste to energy (WtE) technologies: a review. Renew Energy Focus 24:1–11.  https://doi.org/10.1016/j.ref.2017.11.001 CrossRefGoogle Scholar
  12. Bräuer SL, Cadillo-Quiroz H, Yashiro E, Yavitt JB, Zinder SH (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442.  https://doi.org/10.1038/nature04810
  13. Calderón K, González-Martínez A, Gómez-Silván C, Osorio F, Rodelas BN, González-López J (2013) Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: recent advances and future prospects. Int J Mol Sci 14:18572–18598.  https://doi.org/10.3390/ijms140918572 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 89:303–314.  https://doi.org/10.1007/s00253-010-2858-y PubMedCrossRefGoogle Scholar
  15. Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111.  https://doi.org/10.1016/J.COPBIO.2015.01.008 PubMedCrossRefGoogle Scholar
  16. Carrere H, Antonopoulou G, Affes R, Passos F, Battimelli A, Lyberatos G, Ferrer I (2016) Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour Technol 199:386–397.  https://doi.org/10.1016/j.biortech.2015.09.007 PubMedCrossRefGoogle Scholar
  17. Cavinato C, Bolzonella D, Pavan P, Fatone F, Cecchi F (2013) Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renew Energy 55:260–265.  https://doi.org/10.1016/j.renene.2012.12.044 CrossRefGoogle Scholar
  18. Chelliapan S, Wilby T, Yuzir A, Sallis PJ (2011) Influence of organic loading on the performance and microbial community structure of an anaerobic stage reactor treating pharmaceutical wastewater. Desalination 271:257–264.  https://doi.org/10.1016/j.desal.2010.12.045 CrossRefGoogle Scholar
  19. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064.  https://doi.org/10.1016/J.BIORTECH.2007.01.057 PubMedCrossRefGoogle Scholar
  20. Chen C, Guo WS, Ngo HH, Lee DJ, Tung KL, Jin PK, Wang J, Wu Y (2016) Challenges in biogas production from anaerobic membrane bioreactors. Renew Energ 98:120–134.  https://doi.org/10.1016/j.renene.2016.03.095 CrossRefGoogle Scholar
  21. Cho S-K, Im W-T, Kim D-H, Kim M-H, Shin H-S, Oh S-E (2013) Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis. Bioresour Technol 131:210–217.  https://doi.org/10.1016/J.BIORTECH.2012.12.100 PubMedCrossRefGoogle Scholar
  22. Coelho NMG, Droste RL, Kennedy KJ (2011) Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Res 45:2822–2834.  https://doi.org/10.1016/j.watres.2011.02.032 PubMedCrossRefGoogle Scholar
  23. Dang Y, Sun D, Woodard TL, Wang L-Y, Nevin KP, Holmes DE (2017) Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials. Bioresour Technol 238:30–38.  https://doi.org/10.1016/j.biortech.2017.04.021 PubMedCrossRefGoogle Scholar
  24. de Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375.  https://doi.org/10.1016/j.watres.2003.11.028 PubMedCrossRefGoogle Scholar
  25. De Gioannis G, Muntoni A, Polettini A, Pomi R, Spiga D (2017) Energy recovery from one- and two-stage anaerobic digestion of food waste. Waste Manag 68:595–602.  https://doi.org/10.1016/J.WASMAN.2017.06.013 PubMedCrossRefGoogle Scholar
  26. de Los Reyes FL III, Weaver JE, Wang L (2015) A methodological framework for linking bioreactor function to microbial communities and environmental conditions. Curr Opin Biotechnol 33:112–118.  https://doi.org/10.1016/j.copbio.2015.02.002 CrossRefGoogle Scholar
  27. De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9.  https://doi.org/10.1016/j.biortech.2012.02.079 PubMedCrossRefGoogle Scholar
  28. De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse feeding induces functional stability in anaerobic digestion. Microb Biotechnol 6:414–424.  https://doi.org/10.1111/1751-7915.12025 PubMedPubMedCentralCrossRefGoogle Scholar
  29. De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N (2015) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323.  https://doi.org/10.1016/J.WATRES.2015.02.025 PubMedCrossRefGoogle Scholar
  30. De Vrieze J, Raport L, Roume H, Vilchez-Vargas R, Auregui RJ, Pieper DH, Boon N (2016) The full-scale anaerobic digestion microbiome is represented by specific marker populations. Water Res 104:101–110.  https://doi.org/10.1016/j.watres.2016.08.008 PubMedCrossRefGoogle Scholar
  31. De Vrieze J, Christiaens MER, Verstraete W (2017) The microbiome as engineering tool: manufacturing and trading between microorganisms. New Biotechnol 39:206–214.  https://doi.org/10.1016/j.nbt.2017.07.001 CrossRefGoogle Scholar
  32. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Bio/Technol 7:173–190.  https://doi.org/10.1007/s11157-008-9131-1 CrossRefGoogle Scholar
  33. Fezzani B, Cheikh RB (2010) Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresour Technol 101:1628–1634.  https://doi.org/10.1016/j.biortech.2009.09.067 PubMedCrossRefGoogle Scholar
  34. Fitamo T, Treu L, Boldrin A, Sartori C, Angelidaki I, Scheutz C (2017) Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times. Water Res 118:261–271.  https://doi.org/10.1016/J.WATRES.2017.04.012 PubMedCrossRefGoogle Scholar
  35. Ghasimi DSM, Tao Y, de Kreuk M, Zandvoort MH, van Lier JB (2015) Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates. Biotechnol Biofuels 8:171.  https://doi.org/10.1186/s13068-015-0355-3 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gómez X, Cuetos MJ, Cara J, Mora A, Garcıá AI (2006) Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes Conditions for mixing and evaluation of the organic loading rate. Renew Energy 31:2017–2024.  https://doi.org/10.1016/j.renene.2005.09.029 CrossRefGoogle Scholar
  37. Gonzalez-Martinez A, Calderón K, González-López J (2016a) New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation. Amino Acids 48:1123–1130.  https://doi.org/10.1007/s00726-016-2185-4 PubMedCrossRefGoogle Scholar
  38. Gonzalez-Martinez A, Garcia-Ruiz MJ, Rodriguez-Sanchez A, Osorio F, Gonzalez-Lopez J (2016b) Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester. Appl Microbiol Biotechnol 100:6013–6033.  https://doi.org/10.1007/s00253-016-7393-z PubMedCrossRefGoogle Scholar
  39. Gonzalez-Martinez A, Muñoz-Palazon B, Rodriguez-Sanchez A, Maza-Márquez P, Mikola A, Gonzalez-Lopez J, Vahala R (2017) Start-up and operation of an aerobic granular sludge system under low working temperature inoculated with cold-adapted activated sludge from Finland. Bioresour Technol 239:180–189.  https://doi.org/10.1016/j.biortech.2017.05.037 PubMedCrossRefGoogle Scholar
  40. Gorrasi S, Izzo G, Massini G, Signorini A, Bargini P, Fenice M (2014) From polluting seafood wastes to energy. Production of hydrogen and methane from raw chitin material by a two-phase process. J Environ Prot Ecol 75:526–536Google Scholar
  41. Goswami R, Chattopadhyay P, Shome A, Banerjee SN, Chakraborty AK, Mathew AK, Chaudhury S (2016) An overview of physico-chemical mechanisms of biogas production by microbial communities: a step towards sustainable waste management. 3. Biotech 6:72.  https://doi.org/10.1007/s13205-016-0395-9 CrossRefGoogle Scholar
  42. Gou C, Yang Z, Huang J, Wang H, Xu H, Wang L (2014) Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 105:146–151.  https://doi.org/10.1016/j.chemosphere.2014.01.018 PubMedCrossRefGoogle Scholar
  43. Guo X, Wang C, Sun F, Zhu W, Wu W (2014) A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour Technol 152:420–428.  https://doi.org/10.1016/j.biortech.2013.11.012 PubMedCrossRefGoogle Scholar
  44. Guo J, Peng Y, Ni B-J, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Factories 14:33–44.  https://doi.org/10.1186/s12934-015-0218-4 CrossRefGoogle Scholar
  45. Hao L, Bize A, Conteau D, Chapleur O, Courtois S, Kroff P, Desmond-LeQuéméner E, Bouchez T, Mazeas L (2016) New insights into the key microbialphylotypes of anaerobic sludge digesters under different operational conditions. Water Res 102:158–169.  https://doi.org/10.1016/j.watres.2016.06.014 PubMedCrossRefGoogle Scholar
  46. Hernández MA, Susa MR, Andres Y (2014) Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresour Technol 168:112–118.  https://doi.org/10.1016/j.biortech.2014.02.101 PubMedCrossRefGoogle Scholar
  47. Hori T, Sasaki D, Haruta S, Shigematsu T, Ueno Y, Ishii M, Igarashi Y (2011) Detection of active, potentially acetate-oxidizing syntrophs in an anaerobic digester by flux measurement and formyltetrahydrofolate synthetase (FTHFS) expression profiling. Microbiology 157:1980–1989.  https://doi.org/10.1099/mic.0.049189-0 PubMedCrossRefGoogle Scholar
  48. Izzo G, Rosa S, Massini G, Patriarca C, Fenice M, Fiocchetti F, Marone A, Varrone C, Signorini A (2014) From hypertrophic lagoons to bioenergy production. J Env Prot Ecol 15:537–546Google Scholar
  49. Kaever A, Landesfeind M, Feussner K, Morgenstern B, Feussner I, Meinicke P, Gill AC (2014) Meta-analysis of pathway enrichment: combining independent and dependent omics data sets. PLoS One 9:e89297.  https://doi.org/10.1371/journal.pone.0089297 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744.  https://doi.org/10.1016/J.WASMAN.2011.03.021 PubMedCrossRefGoogle Scholar
  51. Kim J, Novak JT, Higgins MJ (2011) Multi-staged anaerobic sludge digestion processes. J Environ Eng 137:0000372.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000372 CrossRefGoogle Scholar
  52. Kundu K, Sharma S, Sreekrishnan TR (2012) Effect of operating temperatures on the microbial community profiles in a high cell density hybrid anaerobic bioreactor. Bioresour Technol 118:502–511.  https://doi.org/10.1016/j.biortech.2012.05.047 PubMedCrossRefGoogle Scholar
  53. Kundu K, Bergmann I, Hahnke S, Klocke M, Sharma S, Sreekrishnan TR (2013) Carbon source—a strong determinant of microbial community structure and performance of an anaerobic reactor. J Biotechnol 168:616–624.  https://doi.org/10.1016/j.jbiotec.2013.08.023 PubMedCrossRefGoogle Scholar
  54. Kundu K, Sharma S, Sreekrishnan TR (2017) Influence of process parameters on anaerobic digestion microbiome in bioenergy production: towards an improved understanding. Bioenergy Res 10:288–303.  https://doi.org/10.1007/s12155-016-9789-0 CrossRefGoogle Scholar
  55. Li L, He Q, Ma Y, Wang X, Peng X (2016) A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing. Microb Cell Factories 15:1–11.  https://doi.org/10.1186/s12934-016-0466-y
  56. Lin J, Zuo J, Ji R, Chen X, Liu F, Wang K, Yang Y (2012) Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste. J Environ Sci 24:1288–1294.  https://doi.org/10.1016/S1001-0742(11)60927-3 CrossRefGoogle Scholar
  57. Lindeboom REF, Fermoso FG, Weijma J, Zagt K, van Lier JB (2011) Autogenerative high pressure digestion: anaerobic digestion and biogas upgrading in a single step reactor system. Water Sci Technol 64:647–653.  https://doi.org/10.2166/wst.2011.664 PubMedCrossRefGoogle Scholar
  58. Liu J, Chen H, Zhu Q, Shen Y, Wang X, Wang M, Peng C (2015) A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview. Atmos Environ 115:26–35.  https://doi.org/10.1016/j.atmosenv.2015.05.019 CrossRefGoogle Scholar
  59. Liu C, Wang W, Anwar N, Ma Z, Liu G, Zhang R (2017) Effect of organic loading rate on anaerobic digestion of food waste under mesophilic and thermophilic conditions. Energy Fuel 31:2976−2984.  https://doi.org/10.1021/acs.energyfuels.7b00018 CrossRefGoogle Scholar
  60. Liu Z, Si B, Li J, He J, Zhang C, Lu Y, Zhang Y, Xing XH (2018) Bioprocess engineering for biohythane production from low-grade waste biomass: technical challenges towards scale up. Curr Opin Biotechnol 50:25–31.  https://doi.org/10.1016/j.copbio.2017.08.014 PubMedCrossRefGoogle Scholar
  61. Lo HM, Kurniawan TA, Sillanpää MET, Pai TY, Chiang CF, Chao KP, Liu MH, Chuang SH, Banks CJ, Wang SC, Lin KC, Lin CY, Liu WF, Cheng PH, Chen CK, Chiu HY, Wu HY (2010) Modeling biogas production from organic fraction of MSW co-digested with MSWI ashes in anaerobic bioreactors. Bioresour Technol 101:6329–6335.  https://doi.org/10.1016/j.biortech.2010.03.048 PubMedCrossRefGoogle Scholar
  62. Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in sulfide-rich zodletone spring (Oklahoma). Appl Environ Microbiol 71:6175–6184.  https://doi.org/10.1128/AEM.71.10.6175-6184.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ma J, Zhao QB, Laurens LL, Jarvis EE, Nagle NJ, Chen S, Frear CS (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol Biofuels 8:141.  https://doi.org/10.1186/s13068-015-0322-z PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev 45:540–555.  https://doi.org/10.1016/J.RSER.2015.02.032 CrossRefGoogle Scholar
  65. Martin-Ryals A, Schideman L, Li P, Wilkinson H, Wagner R (2015) Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresour Technol 189:62–70.  https://doi.org/10.1016/j.biortech.2015.03.069 PubMedCrossRefGoogle Scholar
  66. Maspolim Y, Zhou Y, Guo C, Xiao K, Ng WJ (2015) Comparison of single-stage and two-phase anaerobic sludge digestion systems—performance and microbial community dynamics. Chemosphere 140:54–62.  https://doi.org/10.1016/j.chemosphere.2014.07.028 PubMedCrossRefGoogle Scholar
  67. Matias MG, Combe M, Barbera C, Mouquet N (2013) Ecological strategies shape the insurance potential of biodiversity. Front Microbiol 3:3–9.  https://doi.org/10.3389/fmicb.2012.00432 CrossRefGoogle Scholar
  68. Matsubayashi M, Shimada Y, Li YY, Harada H, Kubota K (2017) Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters. PLoS One 12:1–13.  https://doi.org/10.1371/journal.pone.0172888 CrossRefGoogle Scholar
  69. Maus I, Koeck DE, Cibis KG, Hahnke S, Kim YS, Langer T, Kreubel J, Erhard M, Bremges A, Off S, Stolze Y, Jaenicke S, Goesmann A, Sczyrba A, Scherer P, König H, Schwarz WH, Zverlov VV, Liebl W, Pühler A, Schlüter A, Klocke M (2016) Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 9:1–28.  https://doi.org/10.1186/s13068-016-0581-3 CrossRefGoogle Scholar
  70. McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219:297–304.  https://doi.org/10.1016/S0378-1097(03)00055-7 PubMedCrossRefGoogle Scholar
  71. Meulepas RJW, Jagersma CG, Khadem AF, Stams AJM, Lens PNL (2010) Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Appl Microbiol Biotechnol 87:1499–1506.  https://doi.org/10.1007/s00253-010-2597-0 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Møller J, Boldrin A, Christensen TH (2009) Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution. Waste Manag Res 27:813–824.  https://doi.org/10.1177/0734242X09344876 PubMedCrossRefGoogle Scholar
  73. Muñoz-Palazon B, Rodriguez-Sanchez A, Castellano-Hinojosa A, Gonzalez-Lopez J, van Loosdrecth MCM, Vahala R, Gonzalez-Martinez A (2018) Quantitative and qualitative studies of microorganisms involved in full-scale autotrophic nitrogen removal performance. AICHE J 64:457–467.  https://doi.org/10.1002/aic.15925 CrossRefGoogle Scholar
  74. Nizami A-S, Korres NE, Murphy JD (2009) Review of the integrated process for the production of grass biomethane. Environ Sci Technol 43:8496–8508.  https://doi.org/10.1021/es901533j PubMedCrossRefGoogle Scholar
  75. Ntougias S, Tanasidis S, Melidis P (2011) Microfaunal indicators, Ciliophora phylogeny and protozoan population shifts in an intermittently aerated and fed bioreactor. J Hazard Mater 186:1862–1869.  https://doi.org/10.1016/j.jhazmat.2010.12.099 PubMedCrossRefGoogle Scholar
  76. Oslaj M, Mursec B, Vindis P (2010) Biogas production from maize hybrids. Biomass Bioenergy 34:1538–1545.  https://doi.org/10.1016/j.biombioe.2010.04.016 CrossRefGoogle Scholar
  77. Padmasiri SI, Zhang J, Fitch M, Norddahl B, Morgenroth E, Raskin L (2007) Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions. Water Res 41:134–144.  https://doi.org/10.1016/j.watres.2006.09.021 PubMedCrossRefGoogle Scholar
  78. Panichnumsin P, Ahring B, Nopharatana A, Chaiprasert P (2012) Microbial community structure and performance of an anaerobic reactor digesting cassava pulp and pig manure. Water Sci Technol 66:1590.  https://doi.org/10.2166/wst.2012.358 PubMedCrossRefGoogle Scholar
  79. Park KY, Jang HM, Park M-R, Lee K, Kim D, Kim YM (2016) Combination of different substrates to improve anaerobic digestion of sewage sludge in a wastewater treatment plant. Int Biodeterior Biodegrad 109:73–77.  https://doi.org/10.1016/J.IBIOD.2016.01.006 CrossRefGoogle Scholar
  80. Pohland FG, Ghosh S (1971) Developments in anaerobic stabilization of organic wastes—the two-phase concept. Environ Lett 1:255–266.  https://doi.org/10.1080/00139307109434990 PubMedCrossRefGoogle Scholar
  81. Pozo C, Martínez-Toledo MV, Rodelas B, González-López J (2002) Effects of culture conditions on the production of polyhydroxyalkanoates by Azotobacter chroococcum H23 in media containing a high concentration of alpechín (wastewater from olive oil mills) as primary carbon source. J Biotechnol 97:125–131.  https://doi.org/10.1016/S0168-1656(02)00056-1 PubMedCrossRefGoogle Scholar
  82. Rajagopal R, Massé DI, Singh G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641.  https://doi.org/10.1016/J.BIORTECH.2013.06.030 PubMedCrossRefGoogle Scholar
  83. Rapport JL, Zhang R, Williams RB, Jenkins BM (2012) Anaerobic digestion technologies for the treatment of municipal solid waste. Int J Environ Waste Manag 9:100.  https://doi.org/10.1504/IJEWM.2012.044163 CrossRefGoogle Scholar
  84. Regueiro L, Veiga P, Figueroa M, Lema JM, Carballa M (2014) Influence of transitional states on the microbial ecology of anaerobic digesters treating solid wastes. Appl Microbiol Biotechnol 98:2015–2027.  https://doi.org/10.1007/s00253-013-5378-8 PubMedCrossRefGoogle Scholar
  85. REN21 (2016) Renewables 2016 global status report 2016. REN21, ParisGoogle Scholar
  86. Rolando C, Elba V, Carlos R (2011) Anaerobic mono-digestion of turkey manure: efficient revaluation to obtain methane and soil conditioner. J Water Resource Prot ͳ 3:584–589.  https://doi.org/10.4236/jwarp.2011.38067 CrossRefGoogle Scholar
  87. Salvador AF, Cavaleiro AJ, Sousa DZ, Alves MM, Pereira MA (2013) Endurance of methanogenic archaea in anaerobic bioreactors treating oleate‐based wastewater. Appl Microbiol Biotechnol 97: 2211–2218.  https://doi.org/10.1007/s00253-012-4061-9
  88. Sasaki K, Hirano S, Morita M, Sasaki D, Matsumoto N, Ohmura N, Igarashi Y (2011) Bioelectrochemical system accelerates microbial growth and degradation of filter paper. Appl Microbiol Biotechnol 89:449–455.  https://doi.org/10.1007/s00253-010-2972-x PubMedCrossRefGoogle Scholar
  89. Schauer-Gimenez AE, Zitomer DH, Maki JS, Struble CA (2010) Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. Water Res 44:3555–3564.  https://doi.org/10.1016/J.WATRES.2010.03.037 PubMedCrossRefGoogle Scholar
  90. Schmid M, Baldani JI, Hartmann A (2006) The genus Herbaspirillum. In: The prokaryotes. Springer New York, New York, pp 141–150CrossRefGoogle Scholar
  91. Shen Y, Forrester S, Koval J, Urgun-Demirtas M (2017) Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production. J Clean Prod 167:863–874.  https://doi.org/10.1016/J.JCLEPRO.2017.05.135 CrossRefGoogle Scholar
  92. Smith AM, Sharma D, Lappin-Scott H, Burton S, Huber DH (2014) Microbial community structure of a pilot-scale thermophilic anaerobic digester treating poultry litter. Appl Microbiol Biotechnol 98:2321–2334.  https://doi.org/10.1007/s00253-013-5144-y PubMedCrossRefGoogle Scholar
  93. Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532.  https://doi.org/10.1016/j.rser.2015.06.029 CrossRefGoogle Scholar
  94. Sunyoto NMS, Zhu M, Zhang Z, Zhang D (2016) Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresour Technol 219:29–36.  https://doi.org/10.1016/J.BIORTECH.2016.07.089 PubMedCrossRefGoogle Scholar
  95. Surendra K, Takara D, Hashimoto AG, Kumar Khanal S (2014) Biogas as a sustainable energy source for developing countries: opportunities and challenges. Renew Sust Energ Rev 31:846–859.  https://doi.org/10.1016/j.rser.2013.12.015 CrossRefGoogle Scholar
  96. Town JR, Dumonceaux TJ (2016) Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters. Appl Microbiol Biotechnol 100:1009–1017.  https://doi.org/10.1007/s00253-015-7058-3 PubMedCrossRefGoogle Scholar
  97. Town JR, Links MG, Fonstad TA, Dumonceaux TJ (2014) Molecular characterization of anaerobic digester microbial communities identifies microorganisms that correlate to reactor performance. Bioresour Technol 151:249–257.  https://doi.org/10.1016/J.BIORTECH.2013.10.070 PubMedCrossRefGoogle Scholar
  98. Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381.  https://doi.org/10.1016/J.COPBIO.2011.10.008 PubMedCrossRefGoogle Scholar
  99. Tyagi VK, Lo S-L (2013) Sludge: a waste or renewable source for energy and resources recovery? Renew Sust Energ Rev 25:708–728.  https://doi.org/10.1016/J.RSER.2013.05.029 CrossRefGoogle Scholar
  100. van Tienderen PH (1997) Generalists, specialists, and the evolution of phenotypic plasticity in sympatric populations of distinct species. Evolution (N Y) 51:1372–1380.  https://doi.org/10.1111/j.1558-5646.1997.tb01460.x CrossRefGoogle Scholar
  101. Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64.  https://doi.org/10.1016/J.COPBIO.2013.11.004 PubMedCrossRefGoogle Scholar
  102. Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13:99–106.  https://doi.org/10.1016/J.ANAEROBE.2007.05.004 PubMedCrossRefGoogle Scholar
  103. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026.  https://doi.org/10.1016/J.BIORTECH.2017.09.004 PubMedCrossRefGoogle Scholar
  104. Venkiteshwaran K, Bocher B, Maki J, Zitomer D (2015) Relating anaerobic digestion microbial community and process function. Microbiol Insights 8:37–44.  https://doi.org/10.4137/MBI.S33593 PubMedCrossRefGoogle Scholar
  105. Wang P, Wang H, Qiu Y, Ren L, Jiang B (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production-a review. Bioresour Technol 248:29–36.  https://doi.org/10.1016/j.biortech.2017.06.152 PubMedCrossRefGoogle Scholar
  106. Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci 108:4158–4163.  https://doi.org/10.1073/pnas.1015676108 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wilkins D, Lu X-Y, Shen Z, Chen J, Lee PKH (2015) Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl Environ Microbiol 81:604–613.  https://doi.org/10.1128/AEM.02566-14 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wojcieszak M, Pyzik A, Poszytek K, Krawczyk PS, Sobczak A, Lipinski L, Roubinek O, Palige J, Sklodowska A, Drewniak L (2017) Adaptation of methanogenic inocula to anaerobic digestion of maize silage. Front Microbiol 8:1–12.  https://doi.org/10.3389/fmicb.2017.01881 CrossRefGoogle Scholar
  109. Wu B, Wang X, Deng Y-Y, He X-L, Li Z-W, Li Q, Qin H, Chen J-T, He M-X, Zhang M, Hu G-Q, Yin X-B (2016) Adaption of microbial community during the start-up stage of a thermophilic anaerobic digester treating food waste. Biosci Biotechnol Biochem 80:2025–2032.  https://doi.org/10.1080/09168451.2016.1191326 PubMedCrossRefGoogle Scholar
  110. Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the. Int J Syst Evol Microbiol 56:1331–1340.  https://doi.org/10.1099/ijs.0.64169-0 PubMedCrossRefGoogle Scholar
  111. Yi J, Dong B, Jin J, Dai X (2014) Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis. PLoS One 9:e102548.  https://doi.org/10.1371/journal.pone.0102548 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yıldırım E, Ince O, Aydin S, Ince B (2017) Improvement of biogas potential ofanaerobic digesters using rumen fungi. Renew Energy 109:346–353.  https://doi.org/10.1016/j.renene.2017.03.021 CrossRefGoogle Scholar
  113. Yousuf A, Khan MR, Pirozzi D, Ab Wahid Z (2016) Financial sustainability of biogas technology: barriers, opportunities, and solutions. Energy Sources, Part B Econ Planning, Policy 11:841–848.  https://doi.org/10.1080/15567249.2016.1148084 CrossRefGoogle Scholar
  114. Zhang C, Liu X, Dong X (2005) Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803.  https://doi.org/10.1099/ijs.0.63372-0 PubMedCrossRefGoogle Scholar
  115. Zhang D, Zhu W, Tang C, Suo Y, Gao L, Yuan X, Wang X, Cui Z (2012) Bioreactor performance and methanogenic population dynamics in a low-temperature (5–18 °C) anaerobic fixed-bed reactor. Bioresour Technol 104:136–143.  https://doi.org/10.1016/J.BIORTECH.2011.10.086 PubMedCrossRefGoogle Scholar
  116. Zhang D, Zhu M, Zhou W, Yani S, Zhang Z, Wu J, Zhang D, Zhu M, Zhou W, Yani S, Zhang Z, Wu J (2015) A two-phase anaerobic digestion process for biogas production for combined heat and power generation for remote communities. In: Handbook of clean energy systems. John Wiley & Sons, Ltd, Chichester, pp 1–17Google Scholar
  117. Zhang J, Lv C, Tong J, Liu J, Liu J, Yu D, Wang Y, Chen M, Wei Y (2016a) Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour Technol 200:253–261.  https://doi.org/10.1016/J.BIORTECH.2015.10.037 PubMedCrossRefGoogle Scholar
  118. Zhang Q, Hu J, Lee D-J (2016b) Biogas from anaerobic digestion processes: research updates. Renew Energy 98:108–119.  https://doi.org/10.1016/J.RENENE.2016.02.029 CrossRefGoogle Scholar
  119. Zhang J, Loh K-C, Lee J, Wang C-H, Dai Y, Tong YW (2017) Three-stage anaerobic co-digestion of food waste and horse manure. Sci Rep 7:1269–1278.  https://doi.org/10.1038/s41598-017-01408-w PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ziganshin AM, Liebetrau J, Pröter J, Kleinsteuber S (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 97:5161–5174.  https://doi.org/10.1007/s00253-013-4867-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Institute of Water ResearchUniversity of GranadaGranadaSpain
  2. 2.Department of Public Health and PediatricsUniversity of TorinoTorinoItaly
  3. 3.Centre for Sustainable Future Technologies (CSFT@PoliTo)Istituto Italiano di TecnologiaTorinoItaly
  4. 4.Department of Built Environment, School of engineeringAalto UniversityEspooFinland

Personalised recommendations