Skip to main content
Log in

Production of l-valine from metabolically engineered Corynebacterium glutamicum

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

l-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. l-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of l-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of l-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive l-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for l-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abatemarco J, Hill A, Alper HS (2013) Expanding the metabolic engineering toolbox with directed evolution. Biotechnol J 8:1397–1410

    Article  PubMed  CAS  Google Scholar 

  • Aoki R, Wada M, Takesue N, Tanaka K, Yokota A (2005) Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci Biotechnol Biochem 69:1466–1472

    Article  PubMed  CAS  Google Scholar 

  • Aparicio M, Cano NJ, Cupisti A, Ecder T, Fouque D, Garneata L, Liou HH, Lin S, Schober-Halstenberg HJ, Teplan V, Zakar G (2009) Keto-acid therapy in predialysis chronic kidney disease patients: consensus statements. J Ren Nutr 19:S33–S35

    Article  PubMed  Google Scholar 

  • Bailey JE (1991) Towards a science of metabolic engineering. Science 252:1668–1674

    Article  PubMed  CAS  Google Scholar 

  • Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010a) Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26:361–371

    PubMed  CAS  Google Scholar 

  • Bartek T, Zonnchen E, Klein B, Gerstmeir R, Makus P, Lang S, Oldiges M (2010b) Analysing overexpression of L-valine biosynthesis genes in pyruvate-dehydrogenase-deficient Corynebacterium glutmicum. J Ind Microbial Biotechnol 37:263–270

    Article  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ (2007) L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbio 73:2079–2084

    Article  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield L-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  PubMed  CAS  Google Scholar 

  • Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009) L-valine production during growth of pyruvate dehydrogenase complex deficient Corynetacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator Sug R. Appl Environ Microbio 75:1197–1200

    Article  CAS  Google Scholar 

  • Buchholz J, Schwentner A, Brunnenkan B, Gabris C, Grimm S, Gerstmeir R, Takors R, Eikmanns BJ, Blombach B (2013) Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate. Appl Environ Microbio 79:5566–5575

    Article  CAS  Google Scholar 

  • Buckle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ (2014) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Appl Microbiol Biotechnol 98:297–311

    Article  PubMed  CAS  Google Scholar 

  • Chang JH, Kim DK, Park JT, Kang EW, Yoo TH, Kim BS, Choi KH, Lee HY, Han D-S, Shin SK (2009) Influence of ketoanalogs supplementation on the progression in chronic kidney disease patients who had training on low-protein diet. Nephrology 14:750–757

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay SP, Banerjee AK (1978) Production of valine by a Bacillus-SP. Z Allg Mikrobiol 18:243–254

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Li Y, Hu J, Dong X, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production. Metab Eng 29:66–75

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Liu S, Peng B, Li D, Cheng Z, Zhu J, Zhang S, Peng Y, Li H, Zhang T, Peng X (2017) Exogenous L-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front Immunol 8:207

    PubMed  PubMed Central  Google Scholar 

  • Cho JS, Choi KR, Prabowo CPS, Shin JH, Yang D, Jang J, Lee SY (2017) CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng 42:157–167

    Article  PubMed  CAS  Google Scholar 

  • Cleto S, Jensen JV, Wendisch VF, Lu TK (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth Biol 5:375–385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denina I, Paegle L, Prouza M, Holatko J, Patek M, Nesvera J, Ruklisha M (2010) Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum Delta ilvA Delta panB ilvNM13 (pECKAilvBNC). J Ind Microbiol Biotechnol 37:689–699

    Article  PubMed  CAS  Google Scholar 

  • Eikmanns BJ, Blombach B (2014) The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering. J Biotechnol 192:339–345

    Article  PubMed  CAS  Google Scholar 

  • Elena C, Ravasi P, Castelli ME, Peiru S, Menzella HG (2014) Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Fornt Microbiol 5:21

    Google Scholar 

  • Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen JL, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71:207–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eyal AM, Bressler E (1993) Industrial separation of carboxylic and amino-acids by liquid membranes—applicability, process considerations and potential advantages. Biotechnol Bioeng 41:287–295

    Article  PubMed  CAS  Google Scholar 

  • Gedi V, Yoon MY (2012) Bacterial acetohydroxyacid synthase and its inhibitors—a summary of their structure, biological activity and current status. FEBS J 279:946–963

    Article  PubMed  CAS  Google Scholar 

  • Gu P, Su T, Qi Q (2016) Novel technologies provide more engineering strategies for amino acid-producing microorgansms. Appl Microbiol Biotech 100:2097–2115

    Article  CAS  Google Scholar 

  • Guo YF, Han M, Xu JZ, Zhang WG (2015) Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum. Protein Expr Purif 109:106–112

    Article  PubMed  CAS  Google Scholar 

  • Hao N, Yan M, Zhou H, Liu HM, Cai P, Ouyang PK (2010) The effect of AmtR on growth and amino acids production in Corynebacterium glutamicum. Appl Biochem Microbiol 46(6):561–566

    Article  CAS  Google Scholar 

  • Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation. Appl Environ Microbiol 78:865–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasegawa S, Tanaka Y, Suda M, Jojima T, Inui M (2017) Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Appl Environ Microbiol 83:e02638–e02616

    Article  PubMed  PubMed Central  Google Scholar 

  • Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139:203–210

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Chen X, Zhang Y, Qian H, Zhang W (2012) L-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids 43:2301–2311

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Tan Y, Li Y, Hu X, Xu D, Wang X (2013) Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum. Plasmid 70:303–313

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Li Y, Zhang H, Tan Y, Wang X (2014) Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmid 75:18–26

    Article  PubMed  CAS  Google Scholar 

  • Imam S, Schaeuble S, Brooks AN, Baliga NS, Price ND (2015) Data-driven integration of genome-scale regulatory and metabolic network. Front Microbiol 6:1–10

    Article  Google Scholar 

  • Jojima T, Inui M (2015) Engineering the glycolytic pathway: a potential approach for improvement of biocatalyst performance. Bioengineered 6:328–334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones CM, Hernandez LN, Pfleger BF (2015) Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 99:9381–9393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  PubMed  CAS  Google Scholar 

  • Karau A, Grayson I (2014) Amino acids in human and animal nutrition. Adv Biochem Eng Biotechnol 143:189–228

    PubMed  CAS  Google Scholar 

  • Kass F, Prasad A, Tillack J, Moch M, Giese H, Buchs V, Wiechert W, Oldiges M (2014) Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum. Bioprocess Biosyst Eng 37:2567–2577

    Article  PubMed  CAS  Google Scholar 

  • Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kennerknecht N, Sahm H, Yen MR, Pátek M, Saier MH, Eggeling L (2002) Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khachatryan AZ, Durgar'Yan SS, Martirosov SM (1986) Dependence of valine production by Serratia marcescens on the ion composition of the fermentation medium. Prikladnaya Biokhimiya i Mikrobiologiya 22:554–556

    CAS  Google Scholar 

  • Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F (2013) Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 163:204–216

    Article  PubMed  CAS  Google Scholar 

  • Krause FS, Blombach B, Eikmanns BJ (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76:8053–8061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch VF (2012) Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J Biotechnol 158:231–241

    Article  PubMed  CAS  Google Scholar 

  • Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104:241–252

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Huo Y, Qi G, Wei X, Wang Q, Chen S (2015) Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways. Biotechnol Lett 37:1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Li Y, Wang X (2016) Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 100:8633–8649

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhang B, Liu YM, Yang KQ, Liu SJ (2018) New intracellular Shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum. ACS Synth Biol 7:591–601

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne T, Garcia MD, Guddat LW (2017) The role of a FAD cofactor in the regulation of acetohydroxyacid synthase by redox signaling molecules. J Biol Chem 292(12):5101–5109

  • Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J (2015) Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabol Eng 32:184–194

    Article  CAS  Google Scholar 

  • Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol 74:7457–7462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–7646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marin M, Kramer R (2007) Amino acid transport systems in biotechnologically relevant bacteria. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, Regulation and Metabolic Engineering. Springer, Heidelberg, pp 289–325

    Chapter  Google Scholar 

  • McHardy AC, Tauch A, Ruckert C, Pühler A, Kalinowski J (2003) Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104:229–240

    Article  PubMed  CAS  Google Scholar 

  • Morbach S, Junger C, Sahm H, Eggeling L (2000) Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 90:501–507

    Article  PubMed  CAS  Google Scholar 

  • Mustafi N, Grünberger A, Kohlheyer D, Bott M, Frunzke J (2012) The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metab Eng 14:449–457

    Article  PubMed  CAS  Google Scholar 

  • Mustafi N, Grünberger A, Mahr R, Helfrich S, Nöh K, Blombach B, Kohlheyer D, Frunzke J (2014) Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One 9:e85731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen J (1998) Metabolic engineering: techniques for analysis of targets for genetic manipulations. Biotechnol Bioeng 58:125–132

    Article  PubMed  CAS  Google Scholar 

  • Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Meth 85:155–163

    Article  CAS  Google Scholar 

  • Oldiges M, Eikmanns BJ, Blombach B (2014) Application of metabolic engineering for the biotechnological production of L-valine. Appl Microbiol Biotechnol 98:5859–5870

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 104:7797–7802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park JH, Kim TY, Lee KH (2010) Fed-batch culture of Escherichia coli for L-valine production based on in silico flux response analysis. Biotech Bioeng 108:934–946

    Article  CAS  Google Scholar 

  • Park Y, Park JH, Park S, Lee SY, Cho KH, Kim DD, Shim WS, Yoon IS, Cho HJ, Maeng HJ (2016) Enhanced cellular uptake and pharmacokinetic characteristics of doxorubicin-valine amide prodrug. Molecules 21:E1272

    Article  PubMed  CAS  Google Scholar 

  • Pasupuleti V, Holmes C, Demain A (2010) Applications of protein hydrolysates in biotechnology. In: Pasupuleti VK, Demain AL (eds) Protein Hydrolysates in Biotechnology. Springer, Netherlands, pp 1–9

    Chapter  Google Scholar 

  • Peng F, Wang XY, Sun Y, Dong GB, Yang YK, Liu XX, Bai ZG (2017) Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microbial cell factories 16:ARTN 20110.1186/s12934–017–0814-6

    Article  Google Scholar 

  • Poetsch A, Haussmann U, Burkovski A (2011) Proteomics of corynebacteria: from biotechnology workhorses to pathogens. Proteomics 11:3244–3255

    Article  PubMed  CAS  Google Scholar 

  • Qin T, Hu X, Hu J, Wang X (2015) Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine. Biotechnol Appl Biochem 62:563–573

    Article  PubMed  CAS  Google Scholar 

  • Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravasi P, Peiru S, Gramajo H, Menzella HG (2012) Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum. Microb Cell Factories 11:147

    Article  CAS  Google Scholar 

  • Sahm H, Eggeling L (1999) D-Pantothenate synthesis in Corynebacte rium glutamicum and use of panBC and genes of L-valine synthesis for its overproduction. Appl Environ Microbiol 65:1973–1979

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, Yokota A (2012) Mechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum. J Biosci Bioeng 113:467–473

    Article  PubMed  CAS  Google Scholar 

  • Schulte J, Baumgart M, Bott M (2017) Development of a single-cell GlxR-based cAMP biosensor for Corynebacterium glutamicum. J Biotechnol 258:33–40

    Article  PubMed  CAS  Google Scholar 

  • Schwentner A, Feith A, Munch E, Busche T, Ruckert C, Kalinowski J, Takors R, Blombach B (2018) Metabolic engineering to guide evolution—creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab Eng. https://doi.org/10.1016/j.ymben.2018.02.015

  • Shinfuku Y, Sorpitiporn N, Sono M, Furusawa C, Hirasawa T, Shimizu H (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Factories 8:43

    Article  CAS  Google Scholar 

  • Simeonidis E, Price ND (2015) Genome-scale modeling for metabolic engineering. J Ind Microbiol Biotechnol 42:327–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song Y, Li J, Shin HD, Liu L, Du G, Chen J (2016) Biotechnological production of alpha-keto acids: current status and perspectives. Bioresour Technol 219:716–724

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  PubMed  CAS  Google Scholar 

  • Tadrowski S, Pedroso MM, Sieber V, Larrabee JA, Guddat LW, Schenk G (2016) Metal ions play an essential catalytic role in the mechanism of keto-acid reductoisomerase. Chem Eur J 22:7427–7436

    Article  PubMed  CAS  Google Scholar 

  • Tan Y, Xu D, LiY WX (2012) Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 67:44–52

    Article  PubMed  CAS  Google Scholar 

  • Unthan S, Baumgart M, Radek A, Herbst M, Siebert D, Brühl N, Bartsch A, Bott M, Wiechert W, Marin K, Hans S, Krämer R, Seibold G, Frunzke J, Kalinowski J, Rückert C, Wendisch VF, Noack S (2015) Chassis organism from Corynebacterium glutamicum—a top-down approach to identify and delete irrelevant gene clusters. Biotechnol J 10(2):290–301

    Article  PubMed  CAS  Google Scholar 

  • Vogt M, Haas S, Klaffl S, Polen T, Eggeling L, van Ooyen J, Bott M (2014) Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng 22:40–52

    Article  PubMed  CAS  Google Scholar 

  • Vogt M, Haas S, Polen T, van Ooyen J, Bott M (2015) Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes. Microb Biotechnol 8:351–360

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Hijikata N, Aoki R, Takesue N, Yokota A (2008) Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci Biotechnol Biochem 72:2959–2965

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wen B, Wang J, Xu QY, Zhang CL, Chen N, Xie XX (2013) Enhancing L-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum. Appl Biochem Biotechnol 171:20–30

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30:51–58

    Article  PubMed  CAS  Google Scholar 

  • Wendisch VF, de Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87–102

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Tan Y, Huan X, Hu X, Wang X (2010a) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Meth 80:86–92

    Article  CAS  Google Scholar 

  • Xu D, Tan Y, Shi F, Wang X (2010b) An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 64:85–91

    Article  PubMed  CAS  Google Scholar 

  • Xu D, Tan Y, Li Y, Wang X (2011) Construction of a novel promoter-probe vector and its application for screening strong promoter for Brevibacterium flavum metabolic engineering. World J Microbiol Biotechnol 27:961–968

    Article  CAS  Google Scholar 

  • Xu JZ, Han M, Zhang VY, Guo F, Qian H, Zhang WG (2014) Improvement of L-lysine production combines with minimization of by-products synthesis in Corynebacterium glutamicum. J Chem Technol Biotechnol 89:1924–1933

    Article  CAS  Google Scholar 

  • Yamamoto K, Tsuchisaka A, Yukawa H (2017) Branched-chain amino acids. Adv Biochem Eng Biotechnol 159:103–128

    PubMed  CAS  Google Scholar 

  • Yin L, Hu X, Xu D, Ning J, Chen J, Wang X (2012) Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum. Metab Eng 14:542–550

    Article  PubMed  CAS  Google Scholar 

  • Yin L, Shi F, Hu X, Chen C, Wang X (2013) Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE. J Appl Microbiol 114:1369–1377

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Li Y, Wang X (2013) Molecular evolution of threonine dehydratase in bacteria. PLoS One 8:e80750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kós P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Li Y, Wang C, Wang X (2018) Understanding the high L-valine production in Corynebacterium glutamicum VWB-1 using transcriptomics and proteomics. Sci Rep 8:3632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31370131), Post-graduate Research & Practice Innovation Program of Jiangsu Province (CXZZ12-0755), and the Collaborative Innovation Center of Jiangsu Modern Industrial Fermentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyuan Wang or Peter J. Quinn.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subject.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, H. & Quinn, P.J. Production of l-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 102, 4319–4330 (2018). https://doi.org/10.1007/s00253-018-8952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8952-2

Keywords

Navigation