Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13:598–609
CAS
Article
PubMed
Google Scholar
Ahn WS, Antoniewicz MR (2013) Parallel labeling experiments with [1,2-13C]glucose and [U-13C]glutamine provide new insights into CHO cell metabolism. Metab Eng 15:34–47
CAS
Article
PubMed
Google Scholar
Altamirano C, Illanes A, Casablancas A, Gámez X, Cairó JJ, Gòdia C (2001) Analysis of CHO cells metabolic redistribution in a glutamate-based defined medium in continuous culture. Biotechnol Prog 17:1032–1041
CAS
Article
PubMed
Google Scholar
Berlin E, Hannah JS, Yamane K, Peters RC, Howard BV (1996) Fatty acid modification of membrane fluidity in Chinese hamster ovary (TR715-19) cells. Int J Biochem Cell Biol 28:1131–1139
CAS
Article
PubMed
Google Scholar
Bernson VSM (1976) Acetyl-CoA hydrolase; activity, regulation and physiological, significance of the enzyme in Brown adipose tissue from hamster. Eur J Biochem 67:403–410
CAS
Article
PubMed
Google Scholar
Bi JX, Shuttleworth J, Al-Rubeai M (2004) Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnol Bioeng 85:741–749
CAS
Article
PubMed
Google Scholar
Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 50:299–318
CAS
Article
PubMed
Google Scholar
Breuer G, Evers WAC, de Vree JH, Kleinegris DMM, Martens DE, Wijffels RH, Lamers PP (2013) Analysis of fatty acid content and composition in microalgae. J Vis Exp 80:e50628
Google Scholar
Carinhas N, Duarte TM, Barreiro LC, Carrondo MJT, Alves PM, Teixeira AP (2013) Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. Biotechnol Bioeng 110:3244–3257
CAS
Article
PubMed
Google Scholar
Carvalhal AV, Marcelino I, Carrondo MJT (2003) Metabolic changes during cell growth inhibition by p27 overexpression. Appl Microbiol Biotechnol 63:164–173
CAS
Article
PubMed
Google Scholar
Cooper MS, Hardin WR, Petersen TW, Cattolico RA (2010) Visualizing “green oil” in live algal cells. J Biosci Bioeng 109:198–201
CAS
Article
PubMed
Google Scholar
Duarte TM, Carinhas N, Barreiro LC, Carrondo MJT, Alves PM, Teixeira AP (2014) Metabolic responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng 111:2095–2106
CAS
Article
PubMed
Google Scholar
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
CAS
Article
Google Scholar
Edros R, McDonnell S, Al-Rubeai M (2014) The relationship between mTOR signalling pathway and recombinant antibody productivity in CHO cell lines. BMC Biotechnol 14:15
Article
PubMed
PubMed Central
Google Scholar
Fingar DC, Salama S, Tsou C, Harlow E, Blenis J (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487
CAS
Article
PubMed
PubMed Central
Google Scholar
Fomina-Yadlin D, Du Z, McGrew JT (2014) Gene expression measurements normalized to cell number reveal large scale differences due to cell size changes, transcriptional amplification and transcriptional repression in CHO cells. J Biotechnol 189:58–69
CAS
Article
PubMed
Google Scholar
Hefzi H, Ang KS, Hanscho M, Bordbar A, Ruckerbauer D, Lakshmanan M, Orellana CA, Baycin-Hizal D, Huang Y, Ley D, Martinez VS, Kyriakopoulos S, Jiménez NE, Zielinski DC, Quek L-E, Wulff T, Arnsdorf J, Li S, Lee JS, Paglia G, Loira N, Spahn PN, Pedersen LE, Gutierrez JM, King ZA, Lund AM, Nagarajan H, Thomas A, Abdel-Haleem AM, Zanghellini J, Kildegaard HF, Voldborg BG, Gerdtzen ZP, Betenbaugh MJ, Palsson BO, Andersen MR, Nielsen LK, Borth N, Lee D-Y, Lewis NE (2016) A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism. Cell Syst 3:434–443.e8
CAS
Article
PubMed
Google Scholar
Ihrig TJ, Maulawizada MA, Thomas BD, Jacobson FS (1995) Formate production by Cho cells: biosynthetic mechanism and potential cytotoxicity. In: animal cell technology: developments towards the 21st century. Springer, pp 193–197
Khoo SHG, Al-Rubeai M (2009) Detailed understanding of enhanced specific antibody productivity in NS0 myeloma cells. Biotechnol Bioeng 102:188–199
CAS
Article
PubMed
Google Scholar
Kiehl TR, Shen D, Khattak SF, Jian Li Z, Sharfstein ST (2011) Observations of cell size dynamics under osmotic stress. Cytom Part A 79(A):560–569
Article
Google Scholar
Kim TK, Chung JY, Sung YH, Lee GM (2001) Relationship between cell size and specific Thrombopoietin productivity in Chinese hamster ovary cells during Dihydrofolate Reductase-mediated gene amplification. Biotechnol Bioprocess Eng 6:332–336
CAS
Article
Google Scholar
Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RGW (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787–3792
CAS
Article
PubMed
Google Scholar
Lloyd DR, Holmes P, Jackson LP, Emery AN, Al-Rubeai M (2000) Relationship between cell size, cell cycle and specific recombinant protein productivity. Cytotechnology 34:59–70
CAS
Article
PubMed
PubMed Central
Google Scholar
Martens DE, Tramper J (2010) Flux analysis of mammalian cell culture. Encyclopedia of industrial biotechnology. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. John Wiley & Sons, Inc., Hoboken, pp 2491–2520
Martinelle K, Häggström L (1993) Mechanisms of ammonia and ammonium ion toxicity in animal cells: transport across cell membranes. J Biotechnol 30:339–350
CAS
Article
PubMed
Google Scholar
Martínez VS, Buchsteiner M, Gray P, Nielsen LK, Quek L-E (2015) Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism. Metab Eng Commun 2:46–57
Article
Google Scholar
Martínez VS, Dietmair S, Quek L-E, Hodson MP, Gray P, Nielsen LK (2013) Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol Bioeng 110:660–666
Article
PubMed
Google Scholar
Niklas J, Schräder E, Sandig V, Noll T, Heinzle E (2011) Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess Biosyst Eng 34:533–545
CAS
Article
PubMed
Google Scholar
Pan X, Streefland M, Dalm C, Wijffels RH, Martens DE (2017) Selection of chemically defined media for CHO cell fed-batch culture processes. Cytotechnology 69:39–56
CAS
Article
PubMed
Google Scholar
Pressman BC, Lardy HA (1956) Effect of surface active agents on the latent ATPASE of mitochondira. Biochim Biophys Acta 21:458–466
CAS
Article
PubMed
Google Scholar
Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:9583–9586
CAS
Article
PubMed
Google Scholar
Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BØ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA toolbox. Nat Protoc 2:727–738
Article
Google Scholar
Selvarasu S, Ho YS, Chong WPK, Wong NSC, Yusufi FNK, Lee YY, Yap MGS, Lee D-Y (2012) Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol Bioeng 109:1415–1429
CAS
Article
PubMed
Google Scholar
Sengupta N, Rose ST, Morgan JA (2011) Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108:82–92
CAS
Article
PubMed
Google Scholar
Skulachev VP (1991) Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett 294:158–162
CAS
Article
PubMed
Google Scholar
Sun Z, Zhou R, Liang S, McNeeley KM, Sharfstein ST (2004) Hyperosmotic stress in murine Hybridoma cells: effects on antibody transcription, translation, posttranslational processing, and the cell cycle. Biotechnol Prog 20:576–589
Tait AS, Tarrant RDR, Velez-Suberbie ML, Spencer DIR, Bracewell DG (2013) Differential response in downstream processing of CHO cells grown under mild hypothermic conditions. Biotechnol Prog 29:688–696
CAS
Article
PubMed
PubMed Central
Google Scholar
Tanaka K, Budd MA, Efron ML, Isselbacher KJ (1966) Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci 56:236–242
CAS
Article
PubMed
PubMed Central
Google Scholar
Templeton N, Dean J, Reddy P, Young JD (2013) Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol Bioeng 110:2013–2024
CAS
Article
PubMed
Google Scholar
Terada H (1990) Uncouplers of oxidative phosphorylation. Environ Health Perspect 87:213–218
CAS
Article
PubMed
PubMed Central
Google Scholar
Wahrheit J, Niklas J, Heinzle E (2014) Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells. Metab Eng 23:9–21
CAS
Article
PubMed
Google Scholar
Xie L, Wang DIC (1994) Applications of improved stoichiometric model in medium design and fed-batch cultivation of animal cells in bioreactor. Cytotechnology 15:17–29
CAS
Article
PubMed
Google Scholar
Zagari F, Jordan M, Stettler M, Broly H, Wurm FM (2013) Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. New Biotechnol 30:238–245
CAS
Article
Google Scholar