Skip to main content
Log in

Comparison of six methods for the recovery of PCR-compatible microbial DNA from an agricultural biogas plant

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Six different commercial methods were compared to evaluate their efficiency in recovering high quantity/quality PCR compatible microbial DNA from an agricultural biogas plant. Within the last two decades, biogas plants have been developed to produce energy from organic wastes and from devoted biomass. The complex biotransformations are performed by a diverse consortium of microorganisms that is an important reserve of genes and enzymatic activities with a huge range of applications in various commercial fields. In this respect, the ability to isolate DNA from a complex matrix is of high importance. Important parameters of the recovered DNA are good yield, purity, and quality. The methods examined showed considerable differences about quantity and quality of the recovered DNA and, usually, it was observed that a higher amount was accompanied by more degradation. DNA purity was determined by its PCR amplificability. Only two methods were able to provide DNA pure enough to be directly amplified. For the rest of the methods, a few intermediate steps such as dilution and/or the addition of polyvinylpyrrolidone were necessary to remove the inhibitors present and to amplify the DNA. Real-time PCR analysis evidenced that, as expected, prokaryotic DNA was much more abundant than eukaryotic DNA, but some methods were more suited to recovering prokaryotic or eukaryotic DNA. The digestion analysis of ribosomal DNA amplicons confirmed the influence of the methods on the final output, allowing the recovery of only a fraction of the present species as determined by sequencing a small prokaryotic and eukaryotic ribosomal library.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bergmann I, Mundt K, Sontag M, Baumstark I, Nettmann E, Klocke M (2010) Influence of DNA isolation on Q-PCR-based quantification of methanogenic archaea in biogas fermenters. Syst Appl Microbiol 33(2):78–84

    Article  CAS  PubMed  Google Scholar 

  • Chouari R, Le Paslier D, Daegelen P, Dauga C, Weissenbach J, Sghir A (2010) Molecular analyses of the microbial community composition of an anoxic basin of a municipal wastewater treatment plant reveal a novel lineage of proteobacteria. Microb Ecol 60(2):272–281

    Article  PubMed  Google Scholar 

  • Cunha IS, Barreto CC, Costa OY, Bomfim MA, Castro AP, Kruger RH, Quirino BF (2011) Bacteria and archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe 17(3):118–124

    Article  PubMed  Google Scholar 

  • Demeke T, Jenkins GR (2010) Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 396(6):1977–1990

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 16(1–2):109–123

    Article  CAS  PubMed  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Harea SH (2003) Direct quantification of fungal DNA from soil substrate using real-time PCR. J Microbiol Methods 53:67–76

    Article  CAS  PubMed  Google Scholar 

  • Hermansson A, Lindgren PE (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67:972–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Methods 70(3):565–569

    Article  CAS  PubMed  Google Scholar 

  • Kallmeyer J, Smith DC (2009) An improved electroelution method for separation of DNA from humic substances in marine sediment DNA extracts. FEMS Microbiol Ecol 69(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Koonjul PK, Brandt WF, Farrant JM, Lindsey GG (1999) Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res 27(3):915–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause L, Diaz NN, Edwards RA, Gartemann KH, Krömeke H, Neuweger H, Pühler A, Runte KJ, Schlüter A, Stoye J, Szczepanowski R, Tauch A, Goesmann A (2008) Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol 136(1–2):91–101

    Article  CAS  PubMed  Google Scholar 

  • Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142(1):38–49

    Article  PubMed  Google Scholar 

  • Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3(6):510–516

    Article  CAS  PubMed  Google Scholar 

  • Miao T, Gao S, Jiang S, Kan G, Liu P, Wu X, An Y, Yao S (2014) A method suitable for DNA extraction from humus-rich soil. Biotechnol Lett 36(11):2223–2228

    Article  CAS  PubMed  Google Scholar 

  • Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505

    Article  PubMed  Google Scholar 

  • Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A (2008) The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol 136(1–2):77–90

    Article  PubMed  Google Scholar 

  • Sjöling S, Stafford W, Cowan DA (2006) Soil metagenomics: exploring and exploiting the soil microbial Gene pool. In: van Elsas D, Trevors JT, Jansson JK, Nannipieri P (eds) Modern soil microbiology, 2nd edn. CRC Press, Boca Raton, pp 409–434

    Google Scholar 

  • Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Pühler A, Schlüter A (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17(5):1105–1109

  • Tang YQ, Ji P, Hayashi J, Koike Y, Wu XL, Kida K (2011) Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Appl Microbiol Biotechnol 91(5):1447–1461

    Article  CAS  PubMed  Google Scholar 

  • Tanner MA, Goebel BM, Dojka A, Pace NR (1998) Specific ribosomal DNA sequences from diverse environmental settings correlate with experimental contaminants. Appl Environ Microbiol 64:3110–3113

  • Traversi D, Villa S, Lorenzi E, Degan R, Gilli G (2012) Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. J Environ Manag 111:173–177

    Article  CAS  Google Scholar 

  • Viaud M, Pasquier A, Brygoo Y (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104(9):1027–1032

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

  • Weiss A, Jérôme V, Freitag R (2007) Comparison of strategies for the isolation of PCR-compatible, genomic DNA from a municipal biogas plants. J Chromatogr B Analyt Technol Biomed Life Sci 853(1–2):190–197

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Li F, Deng C, Xu D, Jiang S, Xiong Y (2009) A method for obtaining DNA from compost. Appl Microbiol Biotechnol 84(2):389–395

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Xiao Y, Zeng GM, Xu ZY, Liu YS (2007) Comparison of methods for total community DNA extraction and purification from compost. Appl Microbiol Biotechnol 74(4):918–925

    Article  CAS  PubMed  Google Scholar 

  • Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA (1998) Methods for microbial DNA extraction from soil for PCR amplification. Biol Proced Online 1:40–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Fang HH (2006) Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl Microbiol Biotechnol 70(3):281–289

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stagnati.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

Author 1 declares that he has no conflict of interest. Author 2 declares that she has no conflict of interest. Author 3 declares that she has no conflict of interest. Author 4 declares that he has no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stagnati, L., Soffritti, G., Lanubile, A. et al. Comparison of six methods for the recovery of PCR-compatible microbial DNA from an agricultural biogas plant. Appl Microbiol Biotechnol 101, 3907–3917 (2017). https://doi.org/10.1007/s00253-017-8152-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8152-5

Keywords

Navigation