Skip to main content
Log in

Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biotechnology-derived varieties of canola, cotton, corn and soybean are being grown in the USA, Canada and other predominantly grain exporting countries. Although the amount of farmland devoted to production of biotechnology-derived crops continues to increase, lingering concerns that unintended consequences may occur provide the EU and most grain-importing countries with justification to regulate these crops. Legislation in the EU requires traceability of grains/oilseeds, food and feed products, and labelling, when a threshold level of 0.9% w/w of genetically engineered trait is demonstrated to be present in an analytical sample. The GE content is routinely determined by quantitative PCR (qPCR) and plant genomic DNA provides the template for the initial steps in this process. A plethora of DNA extraction methods exist for qPCR applications. Implementing standardized methods for detection of genetically engineered traits is necessary to facilitate grain marketing. The International Organization for Standardization draft standard 21571 identifies detergent-based methods and commercially available kits that are widely used for DNA extraction, but also indicates that adaptations may be necessary depending upon the sample matrix. This review assesses advantages and disadvantages of various commercially available DNA extraction kits, as well as modifications to published cetyltrimethylammonium bromide methods. Inhibitors are a major obstacle for efficient amplification in qPCR. The types of PCR inhibitors and techniques to minimize inhibition are discussed. Finally, accurate quantification of DNA for applications in qPCR is not trivial. Many confounders contribute to differences in analytical measurements when a particular DNA quantification method is applied and different methods do not always provide concordant results on the same DNA sample. How these differences impact measurement uncertainty in qPCR is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. ISAAA (2009) ISAAA brief 39-2008: executive summary. http://www.isaaa.org/resources/publications/briefs/39/executivesummary/default.html

  2. Davison J, Bertheau Y (2008) Cereal Foods World 53:186–196

    Google Scholar 

  3. Convention on Biological Diversity (2000) Protocol on biosafety. Text of the protocol. http://www.cbd.int/biosafety/protocol.shtml

  4. Hobbs JE, Gaisford JD, Isaac GE, Kerr WA, Klein KK (2002) In: Agricultural biotechnologies: new avenues for production, consumption and technology transfer. Sixth international ICABR conference, Ravello, Italy

  5. Giroux GR (2008) Sample preparation and extraction. http://gmoglobalconference.jrc.ec.europa.eu/2008/Presentations/Giroux%20-%20Intl%20testing%20mtg_2008_final.pdf

  6. Grothaus DG, Bandla B, Currier T, Giroux GR, Jenkins GR, Lipp M, Shan G, Stave JW, Pantella V (2006) J AOAC Int 89:913–928

    CAS  Google Scholar 

  7. Fagan J (2004) In: Ahmed FE (ed) Testing of genetically modified organisms in food. Food Products, New York, pp 163–220

    Google Scholar 

  8. Freese LD (2004)) In: Ahmed FE (ed) Testing of genetically modified organisms in food. Food Products, New York, pp 55–75

    Google Scholar 

  9. Laffont JL, Remund KM, Wright D, Simpson RD, Grégoire S (2005) Seed Sci Res 15:197–204

    Article  Google Scholar 

  10. International Organization for Standardization (2005) ISO 21571:2005. Foodstuffs—methods of analysis for the detection of genetically modified organisms and derived products—nucleic acid extraction. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=34616

  11. Ahmed FE (ed) (2004) Testing of genetically modified organisms in food. Food Products, New York

    Google Scholar 

  12. Lipp M, Shillito R, Giroux R, Spiegelhalter F, Charlton S, Pinero D, Song P (2005) J AOAC Int 88:136–155

    CAS  Google Scholar 

  13. Miraglia M, Berdal KG, Brera C, Corbisier P, Holst-Jensen A, Kok EJ, Marvin HJP, Schimmel H, Rentsch J, van Rie JPPF, Zagon J (2004) Food Chem Toxicol 42:1157–1180

    Article  CAS  Google Scholar 

  14. Terry CF, Harris N, Parkes HC (2002) J AOAC Int 85:768–774

    CAS  Google Scholar 

  15. Doyle JJ, Dole JL (1987) Phytochem Bull 19:11–15

    Google Scholar 

  16. Demeke T, Ratnayaka I, Phan A (2009) J AOAC Int 92:1136–1144

    CAS  Google Scholar 

  17. Bernardo GD, Galderisi U, Cipollaro M, Cascino A (2005) Biotechnol Prog 21:546–549

    Article  Google Scholar 

  18. Bernardo GD, Gaudio SD, Galderisi U, Cascino A, Cipollaro M (2007) Biotechnol Prog 23:297–301

    Article  Google Scholar 

  19. Corbisier P, Broothaerts W, Gioria S, Schimmel H, Burns M, Baoutina A, Emslie KR, Furi S, Kurosawa Y, Holden MJ, Kim H-H, Lee Y-M, Kawaharasaki M, Sin D, Wang J (2007) J Agric Food Chem 55:3249–3257

    Article  CAS  Google Scholar 

  20. CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2009) Pioneer. http://gmo-crl.jrc.ec.europa.eu/summaries/356043-5_DNAExtr_report.pdf

  21. CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2007) Syngenta. http://gmo-crl.jrc.ec.europa.eu/summaries/MIR604_DNAExtr.pdf

  22. Dellaporta SL, Wood J, Hicks JB (1983) Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  23. CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2007) Bayer Crop Science. http://gmo-crl.jrc.ec.europa.eu/summaries/A2704-12_soybean_DNAExtr_report.pdf

  24. Kim CS, Lee CH, Shin JS, Chung YS, Hyung NI (1997) Nucleic Acids Res 25:1085–1086

    Article  CAS  Google Scholar 

  25. Smith DS, Maxwell PW, De Boer SH (2005) J Agric Food Chem 53:9848–9859

    Article  CAS  Google Scholar 

  26. Smith DS, Maxwell PW (2007) Food Control 18:236–242

    Article  CAS  Google Scholar 

  27. Cankar K, Stebih D, Dreo T, Zel J, Gruden K (2006) BMC Biotechnol 6:37

    Article  Google Scholar 

  28. Peano C, Samson MC, Palmieri L, Gulli M, Marmiroli N (2004) J Agric Food Chem 52:6962–6968

    Article  CAS  Google Scholar 

  29. Vaïtilingom M, Pijnenburg H, Gendre F, Brignon P (1999) J Agric Food Chem 47:5261–5266

    Article  Google Scholar 

  30. Yoshimura T, Kuribara H, Kodama T, Yamata S, Futo S, Watanabe S, Aoki N, Lizuka T, Akiyama H, Maitani T, Naito S, Hino A (2005) J Agric Food Chem 53:2060–2069

    Article  CAS  Google Scholar 

  31. Holden MJ, Blasic JR, Bussjaeger L, Kao C, Shokere LA, Kendall DC, Freese L, Jenkins GR (2003) J Agric Food Chem 51:2468–2474

    Article  CAS  Google Scholar 

  32. Trifa Y, Zhang D (2004) J Agric Food Chem 52:1044–1048

    Article  CAS  Google Scholar 

  33. Moreano F, Busch U, Engel K-H (2005) J Agric Food Chem 53:9971–9979

    Article  CAS  Google Scholar 

  34. Charles D, Broeders S, Corbisier P, Trapmann S, Schimmel H, Linsinger T, Emons H (2007) J Agric Food Chem 55:3258–3267

    Article  Google Scholar 

  35. Demeke T, Ratnayaka I (2008) Food Control 19:893–897

    CAS  Google Scholar 

  36. Holst-Jensen A, De Loose M, van den Eede G (2006) J Agric Food Chem 54:2799–2809

    Article  CAS  Google Scholar 

  37. Arumuganathan K, Earle ED (1991) Plant Mol Biol Rep 9:202–218

    Google Scholar 

  38. Heinemann JA, Sparrow AD, Traavik T (2004) Trends Biotechnol 22:331–336

    Article  CAS  Google Scholar 

  39. Papazova N, Malef A, Degrieck I, van Bockstaele, De Loose M (2005) Seed Sci Technol 33:533–542

    Google Scholar 

  40. Mafra I, Silva SA, Moreira EJMO, Ferreira de Silva CS, Beatriz M, Oliveira PP (2008) Food Control 19:1183–1190

    Article  CAS  Google Scholar 

  41. Deagle BE, Eveson JP, Jarman SN (2006) Front Zool 3:11

    Article  Google Scholar 

  42. Shokere LA, Holden MJ, Jenkins GR (2009) Food Control 20:391–401

    Article  CAS  Google Scholar 

  43. Zimmerman A, Luthy J, Pauli U (1998) Z Lebensm Unters Forsch A 207:81–90

    Article  Google Scholar 

  44. Layton DT, Spiegelhalter F (2008) How grain companies are managing the challenges posed by “stacked events” in meeting the global regulatory and commercial requirements for non-GM corn shipments—A comparison of methods in current use. http://gmoglobalconference.jrc.ec.europa.eu/menu.htm

  45. Akiyama H, Watanabe T, Wakabayashi K, Nakade S, Yasui S, Sakata K, Chiba R, Spiegelhalter F, Hino A, Maitani T (2005) Anal Chem 77:7421–7428

    Article  CAS  Google Scholar 

  46. Akiyama H, Sakata K, Kondo K, Tanaka A, Liu MS, Oguchi T, Furui S, Kitta K, Hino A, Teshima R (2008) J Agric Food Chem 56:1977–1983

    Article  CAS  Google Scholar 

  47. Rossen L, Nørskov P, Holmstrøm K, Rasmussen OF (1992) Int J Food Microbiol 17:37–45

    Article  CAS  Google Scholar 

  48. Wilson IG (1997) Appl Environ Microbiol 63:3741–3751

    CAS  Google Scholar 

  49. Peist R, Honsel D, Twieling G, Löffert D (2001) Qiagen News 3:7–9

    Google Scholar 

  50. Demeke T, Adams RP (1992) Biotechniques 12:332–334

    CAS  Google Scholar 

  51. Popping B (2008) Aspects of modular sampling preparation protocols for various matrices. http://gmoglobalconference.jrc.ec.europa.eu/DetailedProgramme.htm

  52. Rohn S, Rawel HM, Kroll J (2002) J Agric Food Chem 50:3566–3571

    Article  CAS  Google Scholar 

  53. Singh RP, Singh M, King RR (1998) J Virol Methods 74:231–235

    Article  CAS  Google Scholar 

  54. Duncan E, Setzke E, Lehmann J (2003) General considerations for purification of genomic DNA. http://www1.qiagen.com/literature/qiagennews/weeklyarticle/Dec03/e48/default.aspx?

  55. Cavaluzzi MJ, Borer PN (2004) Nucleic Acids Res 32:1–9

    Article  Google Scholar 

  56. Stenesh J (1984) Experimental biochemistry. Allyn and Bacon, Needham Heights

    Google Scholar 

  57. Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  58. Ageno M, Dore E, Frontali C (1969) Biophys J 9:1281–1311

    Article  CAS  Google Scholar 

  59. Freifelder D (1978) The DNA molecule, structure and properties. Freeman, San Francisco

    Google Scholar 

  60. Holden M, Haynes R, Rabb S, Satija N, Yang K, Blasic JR (2009) J Agric Food Chem 57:7221–7226

    Article  CAS  Google Scholar 

  61. Singer VL, Jones LJ, Yue ST, Haugland RP (1997) Anal Biochem 249:228–238

    Article  CAS  Google Scholar 

  62. Walsh PS, Varlaro J, Reynolds R (1992) Nucleic Acids Res 20:5061–5065

    Article  CAS  Google Scholar 

  63. Kinney J, Leippe D, Lewis K, Lyke B, Mandrekar M, Schultz J (1999) The DNAQuant™ DNA quantitation system for sensitive detection of dsDNA. http://www.promega.com/pnotes/73/8235_03/8235_03.html

  64. Chen YW, Ge Y, Xu B (2005) J Agric Food Chem 53:10239–10243

    Article  CAS  Google Scholar 

  65. Hupfer CH, Hortzel H, Sachse K, Engel KH (1999) Z Lebensm Unters Forsch A 206:203–207

    Article  Google Scholar 

  66. Scholdberg TA, Norden TD, Nelson DD, Jenkins GR (2009) J Agric Food Chem 57:2903–2911

    Article  CAS  Google Scholar 

  67. Van Ness J, Van Ness LK, Galas DJ (2003) Proc Natl Acad Sci USA 100(8):4504–4509

    Article  Google Scholar 

  68. Murray MG, Thompson WF (1980) Nucleic Acids Res 8:4321–4325

    Article  CAS  Google Scholar 

  69. Lipp M, Brodmann P, Pietsch K, Pauwels J, Anklam E (1999) J AOAC Int 82:923–928

    CAS  Google Scholar 

  70. Niu C, Kebede H, Auld DL, Woodward JE, Burow G, Wright RJ (2008) Afr J Biotechnol 7:2818–2822

    CAS  Google Scholar 

  71. CRL-GMFF – Community Reference Laboratory for GM Food and Feed (2007) Monsanto. http://gmo-crl.jrc.ec.europa.eu/summaries/RT73_DNAExtr_report.pdf

  72. Chhalliyil P, Fagan J, Schoel B (2008) Superior performance of fast ID DNA extraction kit in isolation of high quality DNA from food and feed samples for real-time qPCR analyses exemplified with soy and rice products. http://gmoglobalconference.jrc.ec.europa.eu/menu.htm

  73. Rizzi A, Panebianco L, Giaccu D, Sorlini C, Daffonchio D (2003) Ital J Food Sci 15:499–510

    CAS  Google Scholar 

  74. Minegishi Y, Kurosawa Y, Nishikawa C, Doi N, Kanayama S, Kodama T, Kasahara M, Matsuoka T, Watanabe T, Akiyama H, Teshima R, Mano J, Furui S, Hino A, Kitta K (2008) Evaluation of a new DNA extraction method for PCR detection of genetically modified soybean. http://gmoglobalconference.jrc.ec.europa.eu/menu.htm

  75. Jasbeer K, Ghazali FM, Cheah YK, Son R (2008) Comparison of seven methods for the extraction of DNA from compound feed samples for the purpose of GMO analysis. http://gmoglobalconference.jrc.ec.europa.eu/menu.htm

  76. Tengel C, Schüßler P, Setzke E, Balles J, Sprenger-Haußels M (2001) Biotechniques 31:426–429

    CAS  Google Scholar 

Download references

Acknowledgements

Daniel Perry (Canadian Grain Commission, Winnipeg), Marcia Holden (National Institute of Standards and Technology), Tandace A. Scholdberg and Donald Kendall (USDA/GIPSA, Kansas City) are acknowledged for reviewing the paper and providing useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigst Demeke.

Additional information

*Contribution No. 1015 from the Grain Research Laboratory of the Canadian Grain Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demeke, T., Jenkins, G.R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal Bioanal Chem 396, 1977–1990 (2010). https://doi.org/10.1007/s00216-009-3150-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3150-9

Keywords

Navigation