Skip to main content
Log in

Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

E. coli JM109∆envCnlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envCnlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envCnlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DE, Gueiros-Filho FJ, Erickson HP (2004) Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreessen B, Taylor N, Steinbűchel A (2014) Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Appl Environ Microbiol 80:6574–6582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt TG, de Boer PA (2004) Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol Microbiol 52:1255–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18:555–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi E, Lutkenhaus J (1991) Ftsz ring structure associated with division in Escherichia-Coli. Nature 354:161–164

    Article  CAS  PubMed  Google Scholar 

  • Bi E, Lutkenhaus J (1993) Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol 175:1118–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(beta-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GQ, Hajnal I, Wu H, Lv L, Ye J (2014) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33:565–574

    Article  CAS  Google Scholar 

  • Chen Y, Milam SL, Erickson HP (2012) SulA inhibits assembly of FtsZ by a simple sequestration mechanism. Biochemistry 51:3100–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Lee SY (1999) Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng 62:546–553

    Article  CAS  PubMed  Google Scholar 

  • Chong L (2001) Molecular cloning—a laboratory manual, 3rd edition. Science 292:446–446

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Blaauwen T, de Pedro MA, Nguyen-Disteche M, Ayala JA (2008) Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32:321–344

    Article  CAS  Google Scholar 

  • Eggers J, Steinbűchel A (2014) Impact of Ralstonia eutropha’s poly(3-hydroxybutyrate) (PHB) depolymerases and phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80:7702–7709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–U41

    Article  CAS  PubMed  Google Scholar 

  • Horvat P, Koller M, Braunegg G (2015) Recent advances in elementary flux modes and yield space analysis as useful tools in metabolic network studies. World J Microbiol Biotechnol 31:1315–1328

    Article  CAS  PubMed  Google Scholar 

  • Howard M (2004) A mechanism for polar protein localization in bacteria. J Mol Biol 335:655–663

    Article  CAS  PubMed  Google Scholar 

  • Jiang XR, Wang H, Shen R, Chen GQ (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237

    Article  CAS  PubMed  Google Scholar 

  • Kachrimanidou V, Kopsahelis N, Papanikolaou S, Kookos IK, De Bruyn M, Clark JH, Koutinas AA (2014) Sunflower-based biorefinery: poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresour Technol 172:121–130

    Article  CAS  PubMed  Google Scholar 

  • Kang Z, Wang Q, Zhang H, Qi Q (2008) Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 79:203–208

    Article  CAS  PubMed  Google Scholar 

  • Klockner A, Otten C, Derouaux A, Vollmer W, Buhl H, De Benedetti S, Munch D, Josten M, Molleken K, Sahl HG, Henrichfreise B (2014) AmiA is a penicillin target enzyme with dual activity in the intracellular pathogen chlamydia pneumoniae. Nat Commun 5:4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koutinas M, Menelaou M, Nicolaou EN (2014) Development of a hybrid fermentation-enzymatic bioprocess for the production of ethyl lactate from dairy waste. Bioresour Technol 165:343–349

    Article  CAS  PubMed  Google Scholar 

  • Lock RL, Harry EJ (2008) Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discov 7:324–338

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Taguchi S (2013) Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes. Curr Opin Biotechnol 24:1054–1060

    Article  CAS  PubMed  Google Scholar 

  • Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ (2014) Engineering the diversity of polyesters. Curr Opin Biotechnol 29:24–33

    Article  CAS  PubMed  Google Scholar 

  • Nishii W, Takahashi K (2003) Determination of the cleavage sites in SulA, a cell division inhibitor, by the ATP-dependent HslVU protease from Escherichia coli. FEBS Lett 553:351–354

    Article  CAS  PubMed  Google Scholar 

  • Novak M (2015) Mathematical modelling as a tool for optimized PHA production. Chem Biochem Eng Q 29:183–220

    Article  CAS  Google Scholar 

  • Peters NT, Dinh T, Bernhardt TG (2011) A fail-safe mechanism in the septal ring assembly pathway generated by the sequential recruitment of cell separation amidases and their activators. J Bacteriol 193:4973–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichoff S, Lutkenhaus J (2001) Escherichia coli division inhibitor MinCD blocks septation by preventing Z-ring formation. J Bacteriol 183:6630–6635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priyadarshini R, Popham DL, Young KD (2006) Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J Bacteriol 188:5345–5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Lamothe R, Nicolas E, Sherratt DJ (2012) Chromosome replication and segregation in bacteria. Annu Rev Genet 46:121–143

    Article  CAS  PubMed  Google Scholar 

  • Rocaboy M, Herman R, Sauvage E, Remaut H, Moonens K, Terrak M, Charlier P, Kerff F (2013) The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol Microbiol 90:267–277

    CAS  PubMed  Google Scholar 

  • Rodriguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, Garcia-Fruitos E (2010) Isolation of cell-free bacterial inclusion bodies. Microb Cell Factories 9:71

    Article  CAS  Google Scholar 

  • Rodriguez-Contreras A, Koller M, Braunegg G, Marques-Calvo MS (2016) Poly[(R)-3-hydroxybutyrate] production under different salinity conditions by a novel Bacillus megaterium strain. New Biotechnol 33:73–77

    Article  CAS  Google Scholar 

  • Rowlett VW, Margolin W (2013) The bacterial Min system. Curr Biol 23:R553–R556

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shishatskaya EI, Voinova ON, Goreva AV, Mogilnaya OA, Volova TG (2008) Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 19:2493–2502

    Article  CAS  PubMed  Google Scholar 

  • Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol 15:63–67

    Article  CAS  PubMed  Google Scholar 

  • Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbűchel A (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Tsakona S, Kopsahelis N, Chatzifragkou A, Papanikolaou S, Kookos IK, Koutinas AA (2014) Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi. J Biotechnol 189:36–45

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Dinh T, Bernhardt TG (2009) LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191:5094–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara T, Parzych KR, Dinh T, Bernhardt TG (2010) Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J 29:1412–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu H, Jiang XR, Chen GQ (2014a) Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metab Eng 25:183–193

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yin J, Chen GQ (2014b) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao F, Fan X, Wang S, Song C (2016) Enhancement of medium-chain-length polyhydroxyalkanoates biosynthesis from glucose by metabolic engineering in Pseudomonas mendocina. Biotechnol Lett 38:313–320

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang H, Chen J, Chen GQ (2014) Effects of cascaded vgb promoters on poly(hydroxybutyrate) (PHB) synthesis by recombinant Escherichia coli grown micro-aerobically. Appl Microbiol Biotechnol 98:10013–10021

    Article  CAS  PubMed  Google Scholar 

  • Yakhnina AA, McManus HR, Bernhardt TG (2015) The cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance and viability. Mol Microbiol 97:957–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DC, Tan K, Joachimiak A, Bernhardt TG (2012) A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol 85:768–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Center of Biomedical Analysis, Tsinghua University for the SEM and TEM studies. Plasmid pBHR68 was kindly donated by Professor Alexander Steinbűchel of Műnster University in Germany. This research was financially supported by the State Basic Science Foundation 973 (Grant no. 2012CB725201) and National Natural Science Foundation of China (Grant no. 31430003 and 31270146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Chen.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Chen, J. & Chen, GQ. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli . Appl Microbiol Biotechnol 100, 9907–9916 (2016). https://doi.org/10.1007/s00253-016-7715-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7715-1

Keywords

Navigation