Skip to main content

Advertisement

Log in

Utilization of pyrolytic substrate by microalga Chlamydomonas reinhardtii: cell membrane property change as a response of the substrate toxicity

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetic acid derived from fast pyrolysis of lignocellulosic biomass is a promising substrate for microalgae fermentation for producing lipid-rich biomass. However, crude pyrolytic acetic acid solution contains various toxic compounds inhibiting algal growth. It was hypothesized that such an inhibition was mainly due to the cell membrane damage. In this work, the cell membrane property of algal cells was evaluated at various conditions to elucidate the mechanisms of inhibition caused by the pyrolytic substrate solution. It was found that acetic acid itself served a carbon source for boosting algal cell growth but also caused cell membrane leakage. The acetic acid concentration for highest cell density was 4 g/L. Over-liming treatment of crude pyrolytic acetic acid increased the algal growth with a concurrent reduction of cell membrane leakage. Directed evolution of algal strain enhanced cell membrane integrity and thus increased its tolerance to the toxicity of the crude substrate. Statistical analysis shows that there was a significant correlation between the cell growth performance and the cell membrane integrity (leakage) but not membrane fluidity. The addition of cyto-protectants such as Pluronic F68 and Pluronic F127 enhanced the cell membrane integrity and thus, resulted in enhanced cell growth. The transmission electron microscopy (TEM) of algal cells visually confirmed the cell membrane damage as the mechanism of the pyrolytic substrate inhibition. Collectively, this work indicates that the cell membrane is one major reason for the toxicity of pyrolytic acetic acid when being used for algal culture. To better use this pyrolytic substrate, cell membrane of the microorganism needs to be strengthened through either strain improvement or addition of membrane protectant reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brown TR, Thilakaratne R, Brown RC, Hu G (2013) Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel 106:463–469. doi:10.1016/j.fuel.2012.11.029

    Article  CAS  Google Scholar 

  • Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AOSS, Hogg TA (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Chan JKS, Duff SJB (2010) Methods for mitigation of bio-oil extract toxicity. Bioresource Technol 101(10): 3755–3759. doi:10.1016/j.biortech.2009.12.054

  • Chang D, Yu Z, Islam Z, Zhang H (2015) Mathematical modeling of the fermentation of acid-hydrolyzed pyrolytic sugars to ethanol by the engineered strain Escherichia coli ACCC 11177. Appl Microbiol Biot 99(9):4093–4105. doi:10.1007/s00253-015-6475-7

    Article  CAS  Google Scholar 

  • Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresource Technol 150:220

    Article  CAS  Google Scholar 

  • Cristani M, D'Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D (2007) Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agr Food Chem 55(15):6300–6308. doi:10.1021/jf070094x

    Article  CAS  Google Scholar 

  • Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12(10):409–415

    Article  CAS  Google Scholar 

  • Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology–from genetics to synthetic biology. Biotechnol Adv 33(6 Pt 2):1194–1203. doi:10.1016/j.biotechadv.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12. doi:10.3389/fmicb.2012.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Jarboe L, Wen Z, Choi D, Brown R (2011a) Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl Microbiol Biot 91(6):1519–1523. doi:10.1016/j.coche.2011.08.003

    Article  CAS  Google Scholar 

  • Jarboe LR, Liu P, Royce LA (2011b) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1(1):38–42. doi:10.1007/s00253-011-3495-9

    Article  CAS  Google Scholar 

  • Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies on the mechanism of the antifungal action of benzoate. Biochem J 214(3):657–663. doi:10.1042/bj2140657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91(3):453–462. doi:10.1046/j.1365-2672.2001.01428.x

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q (2010a) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab Eng 12(4):387–391

    Article  PubMed  Google Scholar 

  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010b) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107(2):258–268. doi:10.1016/j.ymben.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresource Technol 133:183–189. doi:10.1016/j.biortech.2013.01.031

    Article  CAS  Google Scholar 

  • Lian J, Garcia-Perez M, Coates R, Wu H, Chen S (2012) Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technol 118:177–186

    Article  CAS  Google Scholar 

  • Liang Y (2012) Lipid products from agriculture by-products and pyrolytic oil. Doctoral dissertation, Iowa State University

    Google Scholar 

  • Liang Y, Zhao X, Chi Z, Rover M, Johnston P, Brown R, Jarboe L, Wen Z (2013) Utilization of acetic acid- rich pyrolytic bio- oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance. Bioresource Technol 133:500. doi:10.1016/j.biortech.2013.01.134

  • Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K (2015) Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresource Technol 196:250–255. doi:10.1016/j.biortech.2015.07.097

    Article  CAS  Google Scholar 

  • Luque L, Westerhof R, Van Rossum G, Oudenhoven S, Kersten S, Berruti F, Rehmann L (2014) Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresource Technol 161:20–28. doi:10.1016/j.biortech.2014.03.009

    Article  CAS  Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32(5):934–951. doi:10.1016/j.biotechadv.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  • Murhammer DW, Goochee CF (1988) Scaleup of insect cell cultures: protective effects of pluronic F-68. Nat Biotech 6(12):1411–1418

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74(1):25–33. doi:10.1016/s0960-8524(99)00161-3

    Article  CAS  Google Scholar 

  • Pearce AK, Booth IR, Brown AJP (2001) Genetic manipulation of 6-phosphofructo-1-kinase and fructose 2,6-bisphosphate levels affects the extent to which benzoic acid inhibits the growth of Saccharomyces cerevisiae. Microbiology 147(2):403–410. doi:10.1099/00221287-147-2-403

    Article  CAS  PubMed  Google Scholar 

  • Piper P, Calderon CO, Hatzixanthis K, Mollapour M (2001) Weak acid adaptation: the stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 147(10):2635–2642

    Article  CAS  PubMed  Google Scholar 

  • Piper PW (1999) Yeast superoxide dismutase mutants reveal a pro-oxidant action of weak organic acid food preservatives. Free Radical Bio Med 27(11):1219–1227

    Article  CAS  Google Scholar 

  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharmyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperon 2(1):12–24

    Article  CAS  Google Scholar 

  • Pollard AS, Rover MR, Brown RC (2012) Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties. J Anal Appl Pyrol 93(0):129–138. doi:10.1016/j.jaap.2011.10.007

    Article  CAS  Google Scholar 

  • Rao A, Zhang Y, Muend S, Rao R (2010) Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob Agents Ch 54(12):5062–5069

    Article  CAS  Google Scholar 

  • Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L (2014) Production of clean pyrolytic sugars for fermentation. Chem Sus Chem 7(6):1662–1668. doi:10.1002/cssc.201301259

    Article  CAS  Google Scholar 

  • Royce L, Liu P, Stebbins M, Hanson B, Jarboe L (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Biochem Biotech 97(18):8317–8327

    CAS  Google Scholar 

  • Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR (2015) Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab Eng 29:180–188. doi:10.1007/s00253-013-5113-5

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Jarboe L, Brown R, Wen Z (2015) A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 33(8):1799–1813. doi:10.1016/j.biotechadv.2015.10.006

    Article  CAS  PubMed  Google Scholar 

  • Sukhbaatar B, Li Q, Wan C, Yu F, Hassan EB, Steele P (2014) Inhibitors removal from bio-oil aqueous fraction for increased ethanol production. Bioresource Technol 161:379–384. doi:10.1016/j.biortech.2014.03.051

    Article  CAS  Google Scholar 

  • Wang H, Livingston D, Srinivasan R, Li Q, Steele P, Yu F (2012) Detoxification and fermentation of pyrolytic sugar for ethanol production. Appl Biochem Biotech 168(6):1568–1583. doi:10.1007/s12010-012-9879-1

    Article  CAS  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9(8):1251–1261. doi:10.1128/EC.00075-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J (1995) Mechanisms of animal cell damage associated with gas bubbles and cell protection by medium additives. J Biotechnol 43(2):81–94. doi:10.1016/0168-1656(95)00133-7

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Chi Z, Rover M, Brown R, Jarboe L, Wen Z (2013) Microalgae fermentation of acetic acid- rich pyrolytic bio- oil: reducing bio- oil toxicity by alkali treatment. Environ Prog Sustain Energy 32(4):955–961. doi:10.1002/ep.11813

    Article  CAS  Google Scholar 

  • Zhao X, Davis K, Brown R, Jarboe L, Wen Z (2015) Alkaline treatment for detoxification of acetic acid-rich pyrolytic bio-oil for microalgae fermentation: effects of alkaline species and the detoxification mechanisms. Biomass Bioenerg 80:203–212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyou Wen.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by NSF Energy for Sustainability (CBET-1133319) and Iowa Energy Center (no. 12-06).

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Jarboe, L. & Wen, Z. Utilization of pyrolytic substrate by microalga Chlamydomonas reinhardtii: cell membrane property change as a response of the substrate toxicity. Appl Microbiol Biotechnol 100, 4241–4251 (2016). https://doi.org/10.1007/s00253-016-7439-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7439-2

Keywords

Navigation