Skip to main content
Log in

Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Monem MO, Al-Zubeiry AH, Al-Gheethi AA (2010) Biosorption of nickel by Pseudomonas cepacia 120S and Bacillus subtilis 117S. Water Sci Technol 61(12):2994–3007

    Article  CAS  PubMed  Google Scholar 

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  PubMed  Google Scholar 

  • Albarracin VH, Avila AL, Amoroso MJ, Abate CM (2008) Copper removal ability by Streptomyces strains with dissimilar growth patterns and endowed with cupric reductase activity. FEMS Microbiol Lett 288:141–148

    Article  CAS  PubMed  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad 1:112. doi:10.4172/2155-6199.1000112

    Article  CAS  Google Scholar 

  • Balasubramanian R, Kenney GE, Rosenzweig AC (2011) Dual pathways for copper uptake by methanotrophic bacteria. J Biol Chem 286:37313–37319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkay T, Wagner-Dobler I (2005) Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57(1):1–52

    Article  CAS  PubMed  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  CAS  PubMed  Google Scholar 

  • Batool R, Yrjala K, Hasnain S (2012) Hexavalent chromium reduction by bacteria from tannery effluent. J Microbiol Biotechnol 22:547–554

    Article  CAS  PubMed  Google Scholar 

  • Bender CL, Cooksey DA (1986) Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol 165:534–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substances (EPS) a carrier of heavy metals in the marine food-chain. Environ Int 32:192–198

    Article  CAS  Google Scholar 

  • Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45(5):1421–1432

    Article  CAS  PubMed  Google Scholar 

  • Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd ES, Barkay T (2012) The mercury resistance operon: from an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol 3. doi:10.3389/fmicb.2012.00349

  • Bramhachari PV, Kavi Kishor PB, Ramadevi R, Kumar R, Rao BR, Dubey SK (2007) Isolation and characterization of mucous exopolysaccharide produced by Vibrio furnissii VB0S3. J Microbiol Biotechnol 17:44–51

    CAS  PubMed  Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium (VI) and superoxide. J Bacteriol 190(21):6996–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  PubMed  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunke M, Deckwer WD, Frischmuth A, Horn JM, Lünsdorf H, Rhode M, Röhricht M, Timmis KN, Weppen P (1993) Microbial retention of mercury from waste streams in a laboratory column containing merA gene bacteria. FEMS Microbiol Rev 11(1–3):145–152

    Article  CAS  PubMed  Google Scholar 

  • Cervantes C, Campos-García J (2007) Reduction and efflux of chromate by bacteria. In: molecular microbiology of heavy metals. Springer Berlin, Heidelberg, pp. 407–419

    Chapter  Google Scholar 

  • Chakraborty J, Das S (2014) Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environ Sci Pollut Res. doi:10.1007/s11356-014-3308-7

    Google Scholar 

  • Chang FM, Coyne HJ, Cubillas C, Vinuesa P, Fang X, Ma Z, Ma D, Helmann JD, García-de los Santos A, Wang YX, Dann CE3rd, Giedroc DP (2014) Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR). J Biol Chem 289(27):19204–19217

  • Chaouni LBA, Etienne J, Greenland T, Vandenesch F (1996) Nucleic acid sequence and affiliation of pLUG10, a novel cadmium resistance plasmid from Staphylococcus lugdunensis. Plasmid 36:1–8

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Archana G (2014) Cytosolic expression of synthetic phytochelatin and bacterial metallothionein genes in Deinococcus radiodurans R1 for enhanced tolerance and bioaccumulation of cadmium. Biometals 27(3):471–482

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP (2012) The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 8:731–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi KS, Hung CS, Giblin DE, Urushidani S, Austin AM, Dinauer MC, Henderson JP (2014) Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem Biol 9:551–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chihomvu P, Stegmann P, Pillay M (2015) Characterization and structure prediction of partial length protein sequences of pcoA, pcoR and chrB genes from heavy metal resistant bacteria from the Klip River, South Africa. Int J Mol Sci 16:7352–7374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chillappagari S, Miethke M, Trip H, Kuipers OP, Marahiel MA (2009) Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol 191:2362–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooksey DA, Azad HR, Cha JS, Lim CK (1990) Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl Environ Microbiol 56:431–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crupper SS, Worrell V, Stewart GC, Iandolo JJ (1999) Cloning and expression of cadD, a new cadmium resistance gene of Staphylococcus aureus. J Bacteriol 181:4071–4075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das S (2014) Microbial biodegradation and bioremediation. Elsevier, USA, p. 634

    Google Scholar 

  • Das S, Raj R, Mangwani N, Dash HR, Chakraborty J (2014a) Heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. In: Das S (ed) Microbial Biodegradation and Bioremediation. Elsevier, USA, pp. 23–54

    Chapter  Google Scholar 

  • Das S, Dash HR, Mangwani N, Chakraborty J, Kumari S (2014b) Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms. J Microbiol Meth 103:80–100

    Article  CAS  Google Scholar 

  • Das P, Sinha S, Mukherjee SK (2014c) Nickel bioremediation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal. Bioremediation J 18(2):169–177

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodet Biodeg 75:207–213

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2015) Enhanced bioremediation of inorganic mercury through simultaneous volatilization and biosorption by transgenic marine bacterium Bacillus cereus BW-03(pPW-05). Int Biodeterior Biodegrad 103:179–185

    Article  CAS  Google Scholar 

  • Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571

    Article  CAS  PubMed  Google Scholar 

  • Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21(4):2642–2653

    Article  CAS  Google Scholar 

  • De J, Ramaiah N, Bhosle NB, Garg A, Vardanyan L, Nagle VL, Fukami K (2007) Potential of mercury resistant marine bacteria for detoxification of chemicals of environmental concern. Microbes Environ 22:336–345

    Article  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Li QB, Lu YH, Sun DH, Huang YL, Chen XR (2003) Bioaccumulation of nickel from aqueous solutions by genetically engineered Escherichia coli. Water Res 37(10):2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Magana A, Aguilar-Barajas E, Moreno-Sánchez R, Ramírez-Díaz MI, Riveros-Rosas H, Vargas E, Cervantes C (2009) Short-chain chromate ion transporter proteins from Bacillus subtilis confer chromate resistance in Escherichia coli. J Bacteriol 191:5441–5445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  Google Scholar 

  • Djoko KY, Chong LX, Wedd AG, Xiao Z (2010) Reaction mechanisms of the multicopper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. J Am Chem Soc 132:2005–2015

    Article  CAS  PubMed  Google Scholar 

  • Duprey A, Chansavang V, Frémion F, Gonthier C, Louis Y, Lejeune P, Dorel C (2014) “NiCo Buster”: engineering E. coli for fast and efficient capture of cobalt and nickel. J Biol Eng 8(1):1–11

    Article  CAS  Google Scholar 

  • Eriksson PO, Sahlman L (1993) 1H NMR studies of the mercuric ion binding protein MerP: sequential assignment, secondary structure and global fold of oxidized MerP. J Biomol NMR 3:613–626

    Article  CAS  PubMed  Google Scholar 

  • Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185(13):3804–3812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge Z, Taylor DE (1996) Helicobacter pylori genes hpcopA and hpcopP constitute a cop operon involved in copper export. FEMS Microbiol Lett 145:181–188

    Article  CAS  PubMed  Google Scholar 

  • Gee AR, Dudeney AWL (1998) Adsorption and crystallization of gold at biological surfaces. In PR Norris, DP Kelly (Eds). Proceedings of the international symposium on Biohydrometallurgy (pp 437–451)

  • Golby S, Ceri H, Marques LLR, Turner RJ (2014) Mixed-species biofilms cultured from an oil sand tailings pond can biomineralize metals. Microb Ecol 68:70–80

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005) ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2. J Biol Chem 280:22590–22595

    Article  CAS  PubMed  Google Scholar 

  • Grass G, Große C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. J Bacteriol 182:1390–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass G, Thakali K, Klebba PE, Thieme D, Muller A, Wildner GF, Rensing C (2004) Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli. J Bacteriol 186:5826–5833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass G, Fricke B, Nies DH (2005) Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. Biometals 18:437–448

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Luoa S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101:8599–8606

    Article  CAS  PubMed  Google Scholar 

  • Hakansson T, Suer P, Mattiasson B, Allard B (2008) Sulphate reducing bacteria to precipitate mercury after electrokinetic soil remediation. Int J Environ Sci Technol 5(2):267–274

    Article  Google Scholar 

  • Hamlett NV, Landale EC, Davis BH, Summers AO (1992) Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J Bacteriol 174(20):6377–6385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henne KL, Nakatsu CH, Thompson DK, Konopka AE (2009) High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BMC Microbiol 9:199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinojosa BM, Garcia-Ruiz R, Carreira JA (2010) Utilizing microbial community structure and function to evaluate the health of heavy metal polluted soils. In Soil Heavy Metals by Sherameti I, Varma A. Chapter 9

  • Hsieh PF, Lin HH, Lin TL, Wang JT (2010) CadC regulates cad and tdc operons in response to gastrointestinal stresses and enhances intestinal colonization of Klebsiella pneumoniae. J Infect Dis 202:52–64

    Article  CAS  PubMed  Google Scholar 

  • Hu YH, Wang HL, Zhang M, Sun L (2009) Molecular analysis of the copper-responsive CopRSCD of a pathogenic Pseudomonas fluorescens strain. J Microbiol 47:277–286

    Article  CAS  PubMed  Google Scholar 

  • Hynninen A, Touze T, Pitkänen L, Mengin-Lecreulx D, Virta M (2009) An efflux transporter PbrA and a phosphatase PbrB cooperate in a lead-resistance mechanism in bacteria. Mol Microbiol 74:384–394

    Article  CAS  PubMed  Google Scholar 

  • Jarosławiecka A, Piotrowska-Seget Z (2014) Lead resistance in micro-organisms. Microbiology 160:12–25

    Article  PubMed  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Juhnke S, Peitzsch N, Hübener N, Grobe C, Nies DH (2002) New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch Microbiol 179:15–25

    Article  CAS  PubMed  Google Scholar 

  • Kalyaeva ES, Kholodii GY, Bass IA, Gorlenko ZM, Yurieva OV, Nikiforov VG (2001) Tn5037, a Tn21-like mercury resistance transposon from Thiobacillus ferrooxidans. Rus J Gen 37:972–975

    Article  CAS  Google Scholar 

  • Kamaludeen SPB, Arunkumar KR, Avudainayagam SA, Ramasamy K (2003) Bioremediation of chromium contaminated environments. Indian J Exp Biol 41:972–985

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73:6317–6320

  • Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Ópez-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kermani AJN, Ghasemi MF, Khosravan A, Farahmand A, Shakibaie MR (2010) Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent. Ira J Environ Health Sci Eng 7(4):279–286

    CAS  Google Scholar 

  • Khan F, Sajid M, Cameotra SS (2013) In silico approach for the bioremediation of toxic pollutants. J Pet Environ Biotechnol 4:2

    Article  CAS  Google Scholar 

  • Khan Z, Nisar MA, Hussain SZ, Arshad MN, Rehman A (2015) Cadmium resistance mechanism in Escherichia coli P4 and its potential use to bioremediate environmental cadmium. Appl Microbiol Biotechnol 99(24):10745–10757

    Article  CAS  PubMed  Google Scholar 

  • Kiyono M, Pan-Hou H (1999) The merG gene product is involved in phenylmercury resistance in Pseudomonas strain K-62. J Bacteriol 181:726–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyono M, Oka Y, Sone Y, Nakamura R, Sato MH, Sakabe K, Pan-Hou H (2013) Bacterial heavy metal transporter MerC increases mercury accumulation in Arabidopsis thaliana. Biochem Engin J 71:19–24

    Article  CAS  Google Scholar 

  • Klaassen CD, Liu SCJ (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Ann Rev Pharmacol Toxicol 39:267–294

    Article  CAS  Google Scholar 

  • Kornberg A (1995) Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol 177:491–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kratchovil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  Google Scholar 

  • Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34:D257–D260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo V, Herrero M, Sánchez JM, Timmis KN (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol Ecol 27:211–224

    Article  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  PubMed  Google Scholar 

  • Macomber L, Imlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzorati M, Balloi A, De Ferra F, Daffonchio D (2010) Identification of molecular markers to follow up the bioremediation of sites contaminated with chlorinated compounds. Methods Mol Biol 668:219–134

    Article  CAS  PubMed  Google Scholar 

  • Mellano MA, Cooksey DA (1988) Induction of the copper resistance operon from Pseudomonas syringae. J Bacteriol 170:4399–4401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mindlin S, Kholodii G, Gorlenko Z, Minakhina S, Minakhin L, Kalyaeva E, Nikiforov V (2001) Mercury resistance transposons of gram-negative environmental bacteria and their classification. Res Microbiol 152:811–822

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Sinha V, Kannan A, Upreti RK (2012) Reduction of chromium-VI by chromium resistant Lactobacilli: a prospective bacterium for bioremediation. Toxicol Int 19:25–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189(20):7417–7425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MJ, Distefano MD, Zydowsky LD, Cummings RT, Walsh CT (1990) Organomercurial lyase and mercuric ion reductase: nature’s mercury detoxification catalysts. Acc Chem Res 23:301–308

    Article  CAS  Google Scholar 

  • Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals 24:401–410

    Article  CAS  PubMed  Google Scholar 

  • Morillo JA, Garcia-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sanchez M (2008) Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J Microbiol Biotechnol 24:2699–2704

    Article  CAS  Google Scholar 

  • Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182:5864–5871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414

    Article  CAS  PubMed  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012a) Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Safety 79:129–133

    Article  CAS  PubMed  Google Scholar 

  • Naik MM, Shamim K, Dubey SK (2012b) Biological characterization of lead resistant bacteria to explore role of bacterial metallothioneinin lead resistance. Curr Sci 103:1–3

    Google Scholar 

  • Nascimento AM, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Gen Mol Res 2(1):92–101

    Google Scholar 

  • Naser HA (2013) Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. Mar Pollut Bull 72:6–13

    Article  CAS  PubMed  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  PubMed  Google Scholar 

  • Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH (1998) CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters. J Bacteriol 180:5799–5802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: An emerging technology for remediation of pesticides. Res J Chem Environ 17:88–105

    CAS  Google Scholar 

  • Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Nat Acad Sci 86:3544–3548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signalling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan-Hou HS, Imura N (1981) Role of hydrogen sulfide in mercury resistance determined by plasmid of Clostridium cochlearium T-2. Arch Microbiol 129(1):49–52

    Article  CAS  PubMed  Google Scholar 

  • Pan-Hou H, Kiyono M, Omura T, Endo G (2002) Polyphosphate produced in recombinant Escherichia coli confers mercury resistance. FEMS Microbiol Lett 207:159–164

    Article  CAS  PubMed  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Bolan N, Meghraj M, Naidu N (2011) Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilising bacteria (Enterobacter sp.). J Environ Manag 92:1115–1120

    Article  CAS  Google Scholar 

  • Patra RC, Malik S, Beer M, Megharaj M, Naidu R (2010) Molecular characterization of chromium (VI) reducing potential in Gram positive bacteria isolated from contaminated sites. Soil Biol Biochem 42(10):1857–1863

    Article  CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry RD, Silver S (1982) Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J Bacteriol 150:973–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  CAS  PubMed  Google Scholar 

  • Plette AC, Benedetti MF, van Riemsdijk WH (1996) Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a gram-positive soil bacterium. Environ Sci Technol 30(6):1902–1910

    Article  CAS  Google Scholar 

  • Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interf Sci 462:166–175

    Article  CAS  Google Scholar 

  • Ravel J, Diruggiero J, Robb FT, Hill RT (2000) Cloning and sequence analysis of the mercury resistance operon of Streptomyces sp. strain CHR28 reveals a novel putative second regulatory gene. J Bacteriol 182:2345–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebello RCL, Gomes KM, Duarte RS, Rachid CTCC, Rosado AS, Regua-Mangia AH (2013) Diversity of mercury resistant Escherichia coli strains isolated from aquatic systems in Rio de Janeiro. Brazil Int J Biodiv. doi:10.1155/2013/265356

    Google Scholar 

  • Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microbial Ecol 37:218–224

    Article  CAS  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67(7):3208–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NJ, Gupta A, Fordham-Skelton AP, Croy RRD, Whitton BA, Huckle JW (1990) Prokaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR. Proc R Soc London B 242:241–247

    Article  CAS  Google Scholar 

  • Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187:2912–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas LA, Yáñez C, González M, Lobos S, Smalla K, Seeger M (2011) Characterization of the metabolically modified heavy metal-resistant Cupriavidus metallidurans strain MSR33 generated for mercury bioremediation. PLoS one 6:e17555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronchel MC, Ramos C, Jensen LB, Molin S, Ramos JL (1995) Construction and behaviour of biologically contained bacteria for environmental adaptations in bioremediation. Appl Environ Microbiol 61:2990–2994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosner JL, Aumercier M (1990) Potentiation by salicylate and salicyl alcohol of cadmium toxicity and accumulation in Escherichia coli. Appl Environ Microbiol 34:2402–2406

    CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Gonzalez-Ruiz G, Torres C (2011) Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase. BMC Biotechnol 11:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    Article  CAS  PubMed  Google Scholar 

  • Sandaa RA, Torsvik V, Enger O, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    Article  CAS  PubMed  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111(8):1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgen Res 15:615–625

    Article  CAS  Google Scholar 

  • Sathyavathi S, Manjula A, Rajendhran J, Gunasekaran P (2014) Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresour Technol 165:270–273

    Article  CAS  PubMed  Google Scholar 

  • Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Nat Acad Sci USA 108:8714–8719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schelert J, Drozda M, Dixit V, Dillman A, Blum P (2006) Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188:7141–7150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schelert J, Rudrappa D, Johnson T, Blum P (2013) Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus. Microbiol 159:1198–1208

    Article  CAS  Google Scholar 

  • Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045-7054

  • Schneiker S, Keller M, Dröge M, Lanka E, Pühler A, Selbitschka W (2001) The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nuc Acids Res 29:5169–5181

    Article  CAS  Google Scholar 

  • Schue M, Dover LG, Besra GS, Parkhill J, Brown NL (2009) Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J Bacteriol 191:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver S, Misra TK (1984) Bacterial transformations of and resistances to heavy metals. In: Genetic control of environmental pollutants. Springer USA, pp. 23–46

  • Silver S, Phung LT (2013) Bacterial mercury resistance proteins. Encyclopedia of Metalloproteins 209-217

  • Singh SK, Grass G, Rensing C, Montfort WR (2004) Cuprous oxidase activity of CueO from Escherichia coli. J Bacteriol 86:7815–7817

    Article  CAS  Google Scholar 

  • Smith TC (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95:147–175

    Article  CAS  Google Scholar 

  • Smith K, Novick RP (1972) Genetic studies on plasmid-linked cadmium resistance in Staphylococcus aureus. J Bacteriol 112:761–772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stahler FN, Odenbreit S, Haas R, Wilrich J, Van Vliet AH, Kusters JG, Kist M, Bereswill S (2006) The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun 74:3845–3852

  • Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, van der Lelie D (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96:171–182

    Article  CAS  PubMed  Google Scholar 

  • Tebo BM, Obraztova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198

    Article  CAS  Google Scholar 

  • Tetaz TJ, Luke RK (1983) Plasmid-controlled resistance to copper in Escherichia coli. J Bacteriol 154:1263–1268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34. J Bacteriol 182(5):1399–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:201–204

    Article  CAS  Google Scholar 

  • Trepreau J, de Rosny E, Duboc C, Sarret G, Petit-Hartlein I, Maillard AP, Covès J (2011) Spectroscopic characterization of the metal-binding sites in the periplasmic metal-sensor domain of CnrX from Cupriavidus metallidurans CH34. Biochem 50:9036–9045

    Article  CAS  Google Scholar 

  • Trevors JT, Stratton GW, Gadd GM (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can J Microbiol 32:447–464

    Article  CAS  PubMed  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  PubMed  Google Scholar 

  • Vargas-García MC, López MJ, Suárez-Estrella F, Moreno J (2012) Compost as a source of microbial isolates for the bioremediation of heavy metals: In vitro selection. Sci Total Environ 431:62–67

    Article  CAS  Google Scholar 

  • Vats N, Lee SF (2001) Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiol 147:653–662

    Article  CAS  Google Scholar 

  • Vieira RH, Volesky B (2010) Biosorption: a solution to pollution? Int Microbiol 3:17–24

    Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  PubMed  Google Scholar 

  • Viti C, Marchi E, Decorosi F, Giovannetti L (2013) Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol Rev 38:633–659

    Article  PubMed  CAS  Google Scholar 

  • Von Mering C, Jensen CJ, Kuhn M, Chaffron S, Doerks M, Krüger B, Bork P (2007) STRING 7-recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35:D358–D362

    Article  Google Scholar 

  • von Rozycki T, Nies DH (2009) Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek 96(2):115–139

    Article  CAS  Google Scholar 

  • Wagner-Dobler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewater. Appl Microbiol Biotechnol 62(2–3):124–133

    Article  CAS  PubMed  Google Scholar 

  • Williams GP, Gnanadesigan M, Ravikumar S (2012) Biosorption and bio-kinetic studies of halobacterial strains against Ni2+, Al3+ and Hg2+ metal ions. Bioresour Technol 107:526–529

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environmental Microbiol 72:1129–1134

  • Wunderli-Ye H, Solioz M (1999) Copper homeostasis in Enterococcus hirae. In: Copper Transport and Its Disorders. Springer USA. pp. 255–264

  • Xue XM, Yan Y, Xu HJ, Wang N, Zhang X, Ye J (2014) ArsH from Synechocystis sp. PCC 6803 reduces chromate and ferric iron. FEMS Microbiol Lett 356:105–112

    Article  CAS  PubMed  Google Scholar 

  • Yoon KP, Silver S (1991) A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. J Bacteriol 173:7636–7642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu P, Yuan J, Deng X, Ma M, Zhang H (2014) Subcellular targeting of bacterial CusF enhances Cu accumulation and alters root to shoot Cu translocation in Arabidopsis. Plant Cell Physiol 55(9):1568–1581

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Yin H, Ye JS, Peng H, Zhang N, Qin HM, Yang F, He BY (2007) Cloning and expression of the nickel/cobalt transferase gene in E. coli BL21 and bioaccumulation of nickel ion by genetically engineered strain. Huan Jing Ke Xue 28(4):918–923

    CAS  PubMed  Google Scholar 

  • Zhang W, Chen L, Liu D (2012) Characterization of a marine-isolated mercury resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl Microbiol Biotechnol 93:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhou Y, Bao H, Zhang L, Wang R, Zhou X (2015) Plasmid-borne cadmium resistant determinants are associated with the susceptibility of Listeria monocytogenes to bacteriophage. Microbiol Res 172:1–6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the authorities of NIT, Rourkela, for providing facilities. Financial supports received by S.D. through the research projects from the Department of Biotechnology, Ministry of Science and Technology, Government of India, on various aspects of microbial bioremediation of organic and inorganic contaminants is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Das.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Dash, H.R. & Chakraborty, J. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 100, 2967–2984 (2016). https://doi.org/10.1007/s00253-016-7364-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7364-4

Keywords

Navigation