Skip to main content
Log in

Production of phenylpyruvic acid from l-phenylalanine using an l-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Phenylpyruvic acid (PPA) is an important organic acid that has a wide range of applications. In this study, the membrane-bound l-amino acid deaminase (l-AAD) gene from Proteus mirabilis KCTC 2566 was expressed in Escherichia coli BL21(DE3) and then the l-AAD was purified. After that, we used the purified enzyme and the recombinant E. coli whole-cell biocatalyst to produce PPA via a one-step biotransformation from l-phenylalanine. l-AAD was solubilized from the membrane and purified 52-fold with an overall yield of 13 %, which corresponded to a specific activity of 0.94 ± 0.01 μmol PPA min−1·mg−1. Then, the biotransformation conditions for the pure enzyme and the whole-cell biocatalyst were optimized. The maximal production was 2.6 ± 0.1 g·L−1 (specific activity of 1.02 ± 0.02 μmol PPA min−1·mg−1 protein, 86.7 ± 5 % mass conversion rate, and 1.04 g·L−1·h−1 productivity) and 3.3 ± 0.2 g L−1 (specific activity of 0.013 ± 0.003 μmol PPA min−1·mg−1 protein, 82.5 ± 4 % mass conversion rate, and 0.55 g·L−1·h−1 productivity) for the pure enzyme and whole-cell biocatalyst, respectively. Comparative studies of the enzymatic and whole-cell biotransformation were performed in terms of specific activity, production, conversion, productivity, stability, need of external cofactors, and recycling. We have developed two eco-friendly and efficient approaches for PPA production. The strategy described herein may aid the biotransformational synthesis of other α-keto acids from their corresponding amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arachea BT, Sun Z, Potente N, Malik R, Isailovic D, Viola RE (2012) Detergent selection for enhanced extraction of membrane proteins. Protein Expr Purif 86:12–20

    Article  CAS  PubMed  Google Scholar 

  • Bannwarth M, Schulz GE (2003) The expression of outer membrane proteins for crystallization. Biochim Biophys Acta 1610:37–45

    Article  CAS  PubMed  Google Scholar 

  • Bifulco D, Pollegioni L, Tessaro D, Servi S, Molla G (2013) A thermostable L-aspartate oxidase: a new tool for biotechnological applications. Appl Microbiol Biotechnol 97:7285–7295

    Article  CAS  PubMed  Google Scholar 

  • Brodelius P, Nilsson K, Mosbach K (1981) Production of α-keto acids. Part I. Immobilized cells of Trigonopsis variabilis containing D-amino acid oxidase. Appl Biochem Biotechnol 6:293–307

    Article  CAS  PubMed  Google Scholar 

  • Brunhuber NMW, Thoden JB, Blanchard JS, Vanhooke JL (2000) Rhodococcus L-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specifity. Biochemistry 39:9174–9187

    Article  CAS  PubMed  Google Scholar 

  • Butò S, Pollegioni L, D'Angiuro L, Pilone MS (1994) Evaluation of D-amino acid oxidase from Rhodotorula gracilis for the production of α-keto acids: a reactor system. Biotechnol Bioeng 44:1288–1294

    Article  PubMed  Google Scholar 

  • Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen H, Gu Z, Zhang H, Wang M, Chen W, Lowther WT, Chen YQ (2013) Expression and purification of integral membrane fatty acid desaturases. PLoS ONE 8:e58139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coban HB, Demirci A, Patterson PH, Elias RJ (2014) Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors. Bioprocess Biosyst Eng 37:2343–2352

    Article  CAS  PubMed  Google Scholar 

  • Das-Bradoo S, Svensson I, Santos J, Plieva F, Mattiasson B, Hatti-Kaul R (2004) Synthesis of alkylgalactosides using whole cells of Bacillus pseudofirmus species as catalysts. J Biotechnol 110:273–285

    Article  CAS  PubMed  Google Scholar 

  • Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510:121–125

    Article  CAS  PubMed  Google Scholar 

  • des Abbayes H, Salaun JY (2003) Double carbonylation and beyond: systems at work and their organometallic models. Dalton Trans 6:1041–1052

    Article  Google Scholar 

  • Doig SD, Simpson H, Alphand V, Furstoss R, Woodley JM (2003) Characterization of a recombinant Escherichia coli TOP10 pQR239 whole-cell biocatalyst for stereoselective Baeyer-Villiger oxidations. Enzym Microb Technol 32:347–355

    Article  CAS  Google Scholar 

  • Drechsel H, Thieken A, Reissbrodt R, Jung G, Winkelmann G (1993) Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 175:2727–2733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Du XY, Clemetson KJ (2002) Snake venom L-amino acid oxidases. Toxicon 40:659–665

    Article  CAS  PubMed  Google Scholar 

  • Duerre JA, Chakrabarty S (1975) L-amino acid oxidases of Proteus rettgeri. J Bacteriol 121:656–663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duetz WA, Van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Lafuente R, Rodriguez V, Guisán JM (1998) The coimmobilization of D-amino acid oxidase and catalase enables the quantitative transformation of D-amino acids (D-phenylalanine) into α-keto acids (phenylpyruvic acid). Enzym Microb Technol 23:28–33

    Article  CAS  Google Scholar 

  • Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D (2009) Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J Biotechnol 139:169–175

    Article  CAS  PubMed  Google Scholar 

  • Geueke B, Hummel W (2002) A new bacterial L-amino acid oxidase with a broad substrate specificity: purification and characterization. Enzym Microb Technol 31:77–87

    Article  CAS  Google Scholar 

  • Hossain GS, Li JH, Shin HD, Chen RR, Du GC, Liu L, Chen J (2013a) Bioconversion of L-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis. J Biotechnol 169:112–120

    Article  PubMed  Google Scholar 

  • Hossain GS, Li JH, Shin HD, Du GC, Liu L, Chen J (2013b) L-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Appl Microbiol Biotechnol 98:1507–1515

    Article  PubMed  Google Scholar 

  • Koutsopoulos S, Kaiser L, Eriksson HM, Zhang SG (2012) Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev 41:1721–1728

    Article  CAS  PubMed  Google Scholar 

  • Leese C, Fotheringham I, Escalettes F, Speight R, Grogan G (2013) Cloning, expression, characterisation and mutational analysis of L-aspartate oxidase from Pseudomonas putida. J Mol Catal B Enzym 85–86:17–22

    Article  Google Scholar 

  • Li XF, Jiang B, Pan BL (2007) Biotransformation of phenylpyruvic acid to phenyllactic acid by growing and resting cells of a Lactobacillus sp. Biotechnol Lett 29:593–597

    Article  CAS  PubMed  Google Scholar 

  • Lin ECC, Pitt B, Civen M, Knox WE (1958) The assay of aromatic amino acid transaminations and keto acid oxidation by the enol borate-tautomerase method. J Biol Chem 233:668–673

    CAS  PubMed  Google Scholar 

  • Marinoni I, Nonnis S, Monteferrante C, Heathcote P, Härtig E, Böttger LH, Trautwein AX, Negri A, Albertini AM, Tedeschi G (2008) Characterization of L-aspartate oxidase and quinolinate synthase from Bacillus subtilis. FEBS J 275:5090–5107

    Article  CAS  PubMed  Google Scholar 

  • Massad G, Zhao H, Mobley HL (1995) Proteus mirabilis amino acid deaminase: cloning, nucleotide sequence, and characterization of aad. J Bacteriol 177:5878–5883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matsumoto T, Takahashi S, Kaieda M, Ueda M, Tanaka A, Fukuda H, Kondo A (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57:515–520

    Article  CAS  PubMed  Google Scholar 

  • Moustafa IM, Foster S, Lyubimov AY, Vrielink A (2006) Crystal structure of LAAO from Calloselasma rhodostoma with an L-phenylalaniine substrate: insights into structure and mechanism. J Mol Biol 364:991–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ninh PH, Honda K, Yokohigashi Y, Okano K, Omasa T, Ohtake H (2013) Development of a continuous bioconversion system using a thermophilic whole-cell biocatalyst. Appl Environ Microbiol 79:1996–2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  PubMed  Google Scholar 

  • Pantaleone DP, Geller AM, Taylor PP (2001) Purification and characterization of an L-amino acid deaminase used to prepare unnatural amino acids. J Mol Catal B Enzym 11:795–803

    Article  CAS  Google Scholar 

  • Richter N, Neumann M, Liese A, Wohlgemuth R, Weckbecker A, Eggert T, Hummel W (2010) Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde. Biotechnol Bioeng 106:541–552

    Article  CAS  PubMed  Google Scholar 

  • Schuurmann J, Quehl P, Festel G, Jose J (2014) Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol 98:8031–8046

    Article  PubMed  Google Scholar 

  • Szwajcer E, Brodelius P, Mosbach K (1982) Production of α-keto acids: 2. Immobilized whole cells of Providencia sp. PCM 1298 containing L-amino acid oxidase. Enzym Microb Technol 4:409–413

    Article  CAS  Google Scholar 

  • Tan Q, Song Q, Zhang Y, Wei D (2007) Characterization and application of D-amino acid oxidase and catalase within permeabilized Pichia pastoris cells in bioconversions. Appl Biochem Biotechnol 136:279–289

    Article  CAS  PubMed  Google Scholar 

  • Toyama MH, Toyama DD, Passero LFD, Laurenti MD, Corbett CE, Tomokane TY, Fonseca FV, Antunes E, Joazeiro PP, Beriam LOS, Martins MAC, Monteiro HSA, Fonteles MC (2006) Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. Toxicon 47:47–57

    Article  CAS  PubMed  Google Scholar 

  • Upadhya R, Bhat S (2000) Stabilization of D-amino acid oxidase and catalase in permeabilized Rhodotorula gracilis cells and its application for the preparation of α-keto acids. Biotechnol Bioeng 68:430–436

    Article  CAS  PubMed  Google Scholar 

  • Villablanca M, Cilento G (1987) Oxidation of phenylpyruvic acid. Biochem Biophys Acta Gen Subj 926:224–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Enterprise-university-research prospective program Jiangsu Province (BY2013015-37) and 863 Program (2014AA021200, 2014AA021201).

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Liu or Guocheng Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Hossain, G.S., Li, J. et al. Production of phenylpyruvic acid from l-phenylalanine using an l-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches. Appl Microbiol Biotechnol 99, 8391–8402 (2015). https://doi.org/10.1007/s00253-015-6757-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6757-0

Keywords

Navigation