Skip to main content
Log in

Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The acid tolerance is particularly important for bifidobacteria to function as probiotics because they usually encounter acidic environments in food products and gastrointestinal tract passage. In this study, two acid-resistant derivatives Bifidobacterium longum JDY1017dpH and Bifidobacterium breve BB8dpH, which displayed a stable acid-resistant phenotype, were generated. The relationship between acid tolerance and cell membrane was investigated by comparing the two acid-resistant derivatives and their parental strains grown in medium with and without Tween 80. The fold increase in acid tolerance of the two acid-resistant derivatives relative to their parental strains was much higher when cells were grown in medium with Tween 80 (104 ~ 105-fold) than without Tween 80 (181- and 245-fold). Moreover, when cells were grown in medium with Tween 80, the two acid-resistant derivatives exhibited more C18:1 and cycC19:0, higher mean fatty acid chain length, lower membrane fluidity, and higher expression of cfa gene encoding cyclopropane fatty acid synthase than their parental strains. No significant differences in cell membrane were observed between the two acid-resistant derivatives and their parental strains when cells were grown in medium without Tween 80. The present study revealed that, when cells were grown in medium with Tween 80, the significant fold increase in acid tolerance of the two acid-resistant derivatives was mainly ascribed to the pronounced changes in cell membrane compared with their parental strains. Results presented here could provide a basis for developing new strategies of cell membrane modification to enhance acid tolerance in bifidobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez-Ordóñez A, Fernández A, López M, Bernardo A (2009) Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384. Food Microbiol 26(3):347–353

    Article  PubMed  Google Scholar 

  • Aricha B, Fishov I, Cohen Z, Sikron N, Pesakhov S, Khozin-Goldberg I, Dagan R, Porat N (2004) Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J Bacteriol 186(14):4638–4644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aureli P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L, Poli A, Pregliasco F, Salvini F, Zuccotti GV (2011) Probiotics and health: an evidence-based review. Pharmacol Res 63(5):366–376

    Article  CAS  PubMed  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J (2002) Short protocols in molecular biology, 5th edn. Wiley, New York

    Google Scholar 

  • Berger B, Moine D, Mansourian R, Arigoni F (2010) HspR mutations are naturally selected in Bifidobacterium longum when successive heat shock treatments are applied. J Bacteriol 192(1):256–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broadbent JR, Larsen RL, Deibel V, Steele JL (2010) Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol 192(9):2445–2458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broadbent JR, Oberg TS, Hughes JE, Ward RE, Brighton C, Welker DL, Steele JL (2014) Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH. J Ind Microbiol Biotechnol 41(3):545–553

    Article  CAS  PubMed  Google Scholar 

  • Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37(2–3):163–173

    Article  CAS  PubMed  Google Scholar 

  • Cao-Hoang L, Marechal P-A, Mai Lê-Thanh M, Gervais P, Waché Y (2008) Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: a guide for prokaryotic and eukaryotic investigation. Biotechnol J 3(7):890–903

    Article  PubMed  Google Scholar 

  • Chang YY, Cronan JE (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Chu-Ky S, Tourdot-Marechal R, Marechal PA, Guzzo J (2005) Combined cold, acid, ethanol shocks in Oenococcus oeni: effects on membrane fluidity and cell viability. Biochim Biophys Acta 1717(2):118–124

    Article  CAS  PubMed  Google Scholar 

  • Collado MC, Sanz Y (2007) Induction of acid resistance in Bifidobacterium: a mechanism for improving desirable traits of potentially probiotic strains. J Appl Microbiol 103(4):1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Corcoran BM, Stanton C, Fitzgerald G, Ross RP (2008) Life under stress: the probiotic stress response and how it may be manipulated. Curr Pharm Des 14(14):1382–1399

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C (2003) Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67(3):429–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Da Silveira MG, Golovina EA, Hoekstra FA, Rombouts FM, Abee T (2003) Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 69(10):5826–5832

    Article  PubMed Central  PubMed  Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Córdoba, Argentina. Available at: ftp://ftp.fao.org/docrep/fao/009/a0512e/a0512e00.pdf. Accessed 19 Nov 2004

  • Fozo EM, Quivey RG Jr (2004) The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186(13):4152–4158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61(4):429–441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gueimonde M, Tölkkö S, Korpimäki T, Salminen S (2004) New real-time quantitative PCR procedure for quantification of bifidobacteria in human fecal samples. Appl Environ Microbiol 70(7):4165–4169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147(8):2255–2264

    CAS  PubMed  Google Scholar 

  • Harmsen HJM, Wildeboer–Veloo ACM, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Zhang B, Guo H, Cui J, Jiang L, Song S, Sun M, Ren F (2012) Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS One 7:e50777. doi:10.1371/journal.pone.0050777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnsson T, Nikkila P, Toivonen L, Rosenqvist H, Laakso S (1995) Cellular fatty acid profiles of Lactobacillus and Lactococcus strains in relation to the oleic acid content of the cultivation medium. Appl Environ Microbiol 61(12):4497–4499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81

    Article  CAS  PubMed  Google Scholar 

  • Khelaifia S, Fardeau ML, Pradel N, Aussignargues C, Garel M, Tamburini C, Cayol JL, Gaudron S, Gaill F, Ollivier B (2011) Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 61(11):2706–2711

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Kim S, Kim HG, Lee J, Lee IS, Park YK (2005) The formation of cyclopropane fatty acids in Salmonella enterica serovar typhimurium. Microbiology 151(1):209–218

    Article  CAS  PubMed  Google Scholar 

  • Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61(8):3069–3075

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lay C, Rigottier-Gois L, Holmstrøm K, Rajilic M, Vaughan EE, De Vos WM, Collins MD, Thiel R, Namsolleck P, Blaut M, Doré J (2005) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71(7):4153–4155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Marteau P, Rambaud JC (1993) Potential of using lactic acid bacteria for therapy and immunomodulation in man. FEMS Microbiol Rev 12:207–220

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Ohishi H, Benno Y (2004) H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. Int J Food Microbiol 93(1):109–113

    Article  CAS  PubMed  Google Scholar 

  • Maus JE, Ingham SC (2003) Employment of stressful conditions during culture production to enhance subsequent cold- and acid-tolerance of bifidobacteria. J Appl Microbiol 95(1):146–154

    Article  CAS  PubMed  Google Scholar 

  • Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95(1–3):60–82

    Article  CAS  PubMed  Google Scholar 

  • Oberg TS, Ward RE, Steele JL, Broadbent JR (2013) Genetic and physiological responses of Bifidobacterium animalis subsp. lactis to hydrogen peroxide stress. J Bacteriol 195(16):3743–3751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100(6):1171–1185

    Article  CAS  PubMed  Google Scholar 

  • Revilla-Guarinos A, Alcántara C, Rozès N, Voigt B, Zúñiga M (2014) Characterization of the response to low pH of Lactobacillus casei ΔRR12, a mutant strain with low D-alanylation activity and sensitivity to low pH. J Appl Microbiol 116(5):1250–1261

    Article  CAS  PubMed  Google Scholar 

  • Ruiz L, Ruas-Madiedo P, Gueimonde M, de los Reyes-Gavilán CG, Margolles A, Sánchez B (2011) How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr 6(3):307–318

    Article  PubMed Central  PubMed  Google Scholar 

  • Russell DA, Ross RP, Fitzgerald GF, Stanton C (2011) Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 149(1):88–105

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (1984) Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9(3):108–112

    Article  CAS  Google Scholar 

  • Sánchez B, Champomier-Vergès MC, Collado MC, Anglade P, Baraige F, Sanz Y, de los Reyes-Gavilán CG, Margolles A, Zagorec M (2007) Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum. Appl Environ Microbiolol 73(20):6450–6459

    Article  Google Scholar 

  • Sánchez B, de los Reyes-Gavilán CG, Margolles A (2006) The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environ Microbiol 8(10):1825–1833

    Article  PubMed  Google Scholar 

  • Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajärvi I, Mättö J (2004) Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96(6):1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Shinitzky M (1984) Membrane fluidity and cellular functions. In: Shinitzky M (ed) Physiology of membrane fluidity. CRC Press, Boca Raton, Fla, pp 1–52

    Google Scholar 

  • To TMH, Grandvalet C, Tourdot-Maréchal R (2011) Cyclopropanation of membrane unsaturated fatty acids is not essential to the acid stress response of Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 77(10):3327–3334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaugien L, Prevots F, Roques C (2002) Bifidobacteria identification based on 16S rRNA and pyruvate kinase partial gene sequence analysis. Anaerobe 8(6):341–344

    Article  CAS  PubMed  Google Scholar 

  • Ventura M, Canchaya C, van Sinderen D, Fitzgerald GF, Zink R (2004a) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl Environ Microbiolol 70(5):3110–3121

    Article  CAS  Google Scholar 

  • Ventura M, van Sinderen D, Fitzgerald GF, Zink R (2004b) Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonine Van Leeuwenhoek 86:205–223

    Article  CAS  Google Scholar 

  • Vitali B, Turroni S, Serina S, Sosio M, Vannini L, Candela M, Guerzoni ME, Brigidi P (2008) Molecular and phenotypic traits of in-vitro-selected mutants of Bifidobacterium resistant to rifaximin. Int J Antimicrob Agents 31(6):555–560

    Article  CAS  PubMed  Google Scholar 

  • Waddington L, Cyr T, Hefford M, Hansen LT, Kalmokoff M (2010) Understanding the acid tolerance response of bifidobacteria. J Appl Microbiol 108(4):1408–1420

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Corrieu G, Béal C (2005) Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. J Dairy Sci 88(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Huang J, Zhou R (2014) Progress in engineering acid stress resistance of lactic acid bacteria. Appl Microbiol Biotechnol 98(3):1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Zhang J, Wang M, Du G, Chen J (2012) Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J Ind Microbiol Biotechnol 39(7):1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Kadim MI, Khoo WJ, Zheng Q, Setyawati MI, Shin Y-J, Lee S-C, Yuk H-G (2014a) Membrane lipid composition and stress/virulence related gene expression of Salmonella enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int J Food Microbiol 191:24–31

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Khoo WJ, Zheng Q, Chung H, Yuk H-G (2014b) Growth temperature alters Salmonella enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 172:102–109

    Article  CAS  PubMed  Google Scholar 

  • Yuk H-G, Marshall DL (2004) Adaptation of Escherichia coli O157: H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl Environ Microbiol 70(6):3500–3505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program) (No. 2012CB720802) and the National High Technology Research and Development Program of China (863 Program) (No. 2011AA100901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hang, X., Zhang, M. et al. Relationship between acid tolerance and cell membrane in Bifidobacterium, revealed by comparative analysis of acid-resistant derivatives and their parental strains grown in medium with and without Tween 80. Appl Microbiol Biotechnol 99, 5227–5236 (2015). https://doi.org/10.1007/s00253-015-6447-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6447-y

Keywords

Navigation