Skip to main content

Advertisement

Log in

Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Interleukin-24 (IL-24), a cytokine belonging to the IL-10 family, can selectively induce apoptosis in a broad range of tumor cells without harming normal cells. The efficient and soluble expression of bioactive recombinant IL-24 in Escherichia coli remains an obstacle because of aggregation and insufficient yield. In this study, a fusion of the small ubiquitin-related modifier (SUMO) or maltose-binding protein (MBP) has shown potential in facilitating the produce of IL-24. Thus, a new construct for MBP-SUMO-IL-24 expression would be a promising approach. Our results showed that the MBP-SUMO-IL-24 fusion protein was efficiently expressed as a soluble protein. SUMO protease-mediated cleavage at the SUMO/IL-24 junction released the recombinant IL-24 from the fusion protein. In addition, a His6 tag fused upstream of SUMO allowed for one-step purification through nickel affinity chromatography. Cleavage of the MBP-SUMO tag on the column resulted in the release of purified IL-24 and simplified the purification process. The final yield of IL-24 with approximately 90 % purity was 19 mg/L in flask fermentation. In vitro activity assays demonstrated that the purified IL-24 could induce apoptosis in MCF-7 breast cancer cells, but not normal NHLF cells, in a dose-dependent manner. In summary, we developed a novel method to express soluble and bioactive IL-24 protein in prokaryotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Azab B, Dash R, Das SK, Bhutia SK, Shen XN, Quinn BA, Sarkar S, Wang XY, Hedvat M, Dmitriev IP, Curiel DT, Grant S, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB (2012) Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) in combination with the Apogossypol derivative BI-97C1 (Sabutoclax) improves therapeutic efficiency in low CAR colorectal cancer cells. J Cell Physiol 227:2145–2153. doi:10.1002/jcp.22947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  PubMed  Google Scholar 

  • Bedouelle H, Duplay P (1988) Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose. Export of the Klenow polymerase into theperiplasmic space. Eur J Biochem 171:541–549

    Article  CAS  PubMed  Google Scholar 

  • Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock RE, Kalman D (2010) Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 31:1957–1965. doi:10.1016/j.peptides.2010.08.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burgess RR (2009) Refolding solubilized inclusion body proteins. Methods Enzymol 463:259–282. doi:10.1016/S0076-6879(09)63017-2

    Article  CAS  PubMed  Google Scholar 

  • Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, Mhashilkar A, Parker K, Vukelja S, Richards D, Hood J, Coffee K, Nemunaitis J (2005) Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 11:149–159

    Article  CAS  PubMed  Google Scholar 

  • Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, Sarkar D, Wang XY, Gupta P, Emdad L, Lebedeva IV, Sauane M, Su ZZ, Rahmani M, Broadus WC, Yong HF, Lesniak MS, Grant S, Curiel DT, Fisher PB (2010) The development of MDA-7/IL-24 as a cancer therapeutic. Pharmacol Ther 128:375–384. doi:10.1016/j.pharmthera.2010.08.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elgebaly MM, Ogbi S, Li W, Mezzetti EM, Prakash R, Johnson MH, Bruno A, Fagan SC, Ergul A (2011) Neurovascular injury in acute hyperglycemia and diabetes: a comparative analysis in experimental stroke. Transl Stroke Res 2:391–398. doi:10.1007/s12975-011-0083-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Emdad L, Sarkar D, Lebedeva IV, Su ZZ, Gupta P, Mahasreshti PJ, Dent P, Curiel DT, Fisher PB (2006) Ionizing radiation enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human ovarian cancer. J Cell Physiol 208:298–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuson KL, Zheng M, Craxton M, Pataer A, Ramesh R, Chada S, Sutton RB (2009) Structural mapping of post-translational modifications in human interleukin-24. J Biol Chem 284:30526–30533. doi:10.1074/jbc.M109.036061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao P, Sun X, Chen X, Wang Y, Foster BA, Subjeck J, Fisher PB, Wang XY (2008) Secretable chaperone Grp170 enhances therapeutic activity of a novel tumor suppressor, mda-7/IL-24. Cancer Res 68:3890–3898. doi:10.1158/0008-5472.CAN-08-0156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta P, Emdad L, Lebedeva IV, Sarkar D, Dent P, Curiel DT, Settleman J, Fisher PB (2008) Targeted combinatorial therapy of non-small cell lung carcinoma using a GST-fusion protein of full-length or truncated MDA-7/IL-24 with Tarceva. J Cell Physiol 215:827–836. doi:10.1002/jcp.21369

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Fisher PB (1993) Use of a sensitive and efficient subtraction hybridization protocol for the identification of genes differentially regulated during the induction of differentiation in human melanoma cells. Mol Cell Differ 1:285–299

    CAS  Google Scholar 

  • Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB (1995) Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11:2477–2486

    CAS  PubMed  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiefer H, Vogel R, Mailer K (2000) Bacterial expression of G-protein-coupled receptors: prediction of expression levels from sequence. Recept Channels 7:109–119

    CAS  PubMed  Google Scholar 

  • Kong B, Guo GL (2011) Enhanced in vitro refolding of fibroblast growth factor 15 with the assistance of SUMO fusion partner. PLoS One 6:e20307. doi:10.1371/journal.pone.0020307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y (2009) Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem 54:1–9. doi:10.1042/BA20090087

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267. doi:10.1016/j.pep.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Z (2008) RAPD: a database of recombinantly-produced antimicrobial peptides. FEMS Microbiol Lett 289:126–129. doi:10.1111/j.1574-6968.2008.01357.x

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Han Y, Fu H, Liu M, Wu J, Chen X, Zhang S, Chen Y (2013) Construction and expression of sTRAIL-melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli. Appl Microbiol Biotechnol 97:2877–2884. doi:10.1007/s00253-012-4541-y

    Article  CAS  PubMed  Google Scholar 

  • Liu JJ, Zhang BF, Yin XX, Pei DS, Yang ZX, Di JH, Chen FF, Li HZ, Xu W, Wu YP, Zheng JN (2012) Expression, purification, and characterization of RGD-mda-7, a His-tagged mda-7/IL-24 mutant protein. J Immunoass Immunochem 33:352–368. doi:10.1080/15321819.2012.659782

    Article  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5:75–86

    Article  CAS  Google Scholar 

  • Mayer M, Buchner J (2004) Refolding of inclusion body proteins. Methods Mol Med 94:239–254

    CAS  PubMed  Google Scholar 

  • Nishikawa T, Ramesh R, Munshi A, Chada S, Meyn RE (2004) Adenovirus-mediated mda-7 (IL24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther 9:818–828

    Article  CAS  PubMed  Google Scholar 

  • Pei DS, Yang ZX, Zhang BF, Yin XX, Li LT, Li HZ, Zheng JN (2012) Enhanced apoptosis-inducing function of MDA-7/IL-24 RGD mutant via the increased adhesion to tumor cells. J Interferon Cytokine Res 32:66–73. doi:10.1089/jir.2011.0040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauane M, Su ZZ, Gupta P, Lebedeva IV, Dent P, Sarkar D, Fisher PB (2008) Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci U S A 105:9763–9768. doi:10.1073/pnas.0804089105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR, Mrozkiewicz MK, McGrath WJ, Listwan P, Kobe B (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313–1322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N, Netto G, Rich D, Mhashilkar A, Parker K, Coffee K, Ramesh R, Ekmekcioglu S, Grimm EA, van Wart Hood J, Merritt J, Chada S (2005) Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther 11:160–172

  • Xiao B, Li W, Yang J, Guo G, Mao XH, Zou QM (2009) RGD-IL-24, a novel tumor-targeted fusion cytokine: expression, purification and functional evaluation. Mol Biotechnol 41:138–144. doi:10.1007/s12033-008-9115-y

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang W, Liu K, Jing S, Guo G, Luo P, Zou Q (2007) Expression, purification, and characterization of recombinant human interleukin 24 in Escherichia coli. Protein Expr Purif 53:339–345

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Bevan JL, Weaver RF, Bigelow DJ (1996) Purification of procinephospholamban expressed in Escherichia coli. Protein Expr Purif 8:463–468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chaogang Bai and Xiaojuan Wang for discussions and pointing out important references. This work was supported by the grants from the National Major Science and Technology Projects of China (Grant No. 2012ZX09304009).

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the National major science and technology projects of China (Grant No. 2012ZX09304009)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aiyou Sun or Dongzhi Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lv, X., Xu, R. et al. Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli . Appl Microbiol Biotechnol 99, 6705–6713 (2015). https://doi.org/10.1007/s00253-015-6441-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6441-4

Keywords

Navigation