Skip to main content

Advertisement

Log in

RGD-IL-24, A Novel Tumor-Targeted Fusion Cytokine: Expression, Purification and Functional Evaluation

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Targeting drugs to tumor cells is a central challenge for improving existing cancer therapies. ACDCRGDCFCG peptide (RGD-4C) binds to αvβ3 integrin, which is selectively expressed in tumor blood vessels and on the surface of some tumor cells. Interleukin 24 (IL-24) is a novel cancer growth-suppressing and apoptosis-inducing cytokine. To enhance the antitumor effect, we coupled RGD-4C to the N-terminus of IL-24 and expressed RGD-IL-24 in Escherichia coli. Cell proliferation and adhesion experiments revealed that RGD-IL-24 specifically binds to MCF-7 cancer cells, and induces apoptosis of MCF-7 cancer cells. These studies support the use of the RGD-IL-24 protein in tumor-targeting therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caudell, E. G., Mumm, J. B., Poindexter, N., Ekmekcioglu, S., Mhashilkar, A. M., Yang, X. H., et al. (2002). The protein product of the tumor suppressor gene, melanoma differentiation-associated gene 7, exhibits immunostimulatory activity and is designated IL-24. Journal of Immunology, 168, 6041–6046.

    CAS  Google Scholar 

  2. Fisher, P. B., Gopalkrishnan, R. V., Chada, S., Ramesh, R., Grimm, E. A., Rosenfeld, M. R., et al. (2003). mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biology & Therapy, 2, S23–S37.

    CAS  Google Scholar 

  3. Inoue, S., Shanker, M., Miyahara, R., Gopalan, B., Patel, S., Oida, Y., et al. (2006). MDA-7/IL-24-based cancer gene therapy: translation from the laboratory to the clinic. Current Gene Therapy, 6, 73–91.

    Article  CAS  Google Scholar 

  4. Sauane, M., Gopalkrishnan, R. V., Choo, H. T., Gupta, P., Lebedeva, I. V., Yacoub, A., et al. (2004). Mechanistic aspects of mda-7/IL-24 cancer cell selectivity analysed via a bacterial fusion protein. Oncogene, 23, 7679–7690.

    Article  CAS  Google Scholar 

  5. Yacoub, A., Mitchell, C., Brannon, J., Rosenberg, E., Qiao, L., McKinstry, R., et al. (2003). MDA-7 (interleukin-24) inhibits the proliferation of renal carcinoma cells and interacts with free radicals to promote cell death and loss of reproductive capacity. Molecular Cancer Therapeutics, 2, 623–632.

    CAS  Google Scholar 

  6. Su, Z., Lebedeva, I. V., Gopalkrishnan, R. V., Goldstein, N. I., Stein, C. A., Reed, J. C., et al. (2001). A combinatorial approach for selectively inducing programmed cell death in human pancreatic cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 98, 10332–10337.

    Article  CAS  Google Scholar 

  7. Ruoslahti, E. (2003). The RGD story: a personal account. Matrix Biology, 22, 459–465.

    Article  CAS  Google Scholar 

  8. Assa-Munt, N., Jia, X., Laakkonen, P., & Ruoslahti, E. (2001). Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry, 40, 2373–2378.

    Article  CAS  Google Scholar 

  9. Curnis, F., Gasparri, A., Sacchi, A., Longhi, R., & Corti, A. (2004). Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity. Cancer Research, 64, 565–571.

    Article  CAS  Google Scholar 

  10. Dickerson, E. B., Akhtar, N., Steinberg, H., Wang, Z. Y., Lindstrom, M. J., Padilla, M. L., et al. (2004). Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to alphavbeta3 integrin. Molecular Cancer Research, 2, 663–673.

    CAS  Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  12. Yang, J., Zhang, W., Liu, K., Jing, S., Guo, G., Luo, P., et al. (2007). Expression, purification, and characterization of recombinant human interleukin 24 in Escherichia coli. Protein Expression and Purification, 53, 339–345.

    Article  CAS  Google Scholar 

  13. Ramesh, R., Mhashilkar, A. M., Tanaka, F., Saito, Y., Branch, C. D., Sieger, K., et al. (2003). Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Research, 63, 5105–5113.

    CAS  Google Scholar 

  14. Sauane, M., Lebedeva, I. V., Su, Z. Z., Choo, H. T., Randolph, A., Valerie, K., et al. (2004). Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways. Cancer Research, 64, 2988–2993.

    Article  CAS  Google Scholar 

  15. Gupta, P., Su, Z. Z., Lebedeva, I. V., Sarkar, D., Sauane, M., Emdad, L., et al. (2006). mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacology and Therapeutics, 111, 596–628.

    Article  CAS  Google Scholar 

  16. Su, Z. Z., Madireddi, M. T., Lin, J. J., Young, C. S., Kitada, S., Reed, J. C., et al. (1998). Fisher PB: The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 14400–14405.

    Article  CAS  Google Scholar 

  17. Xiong, J. P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S. L., et al. (2002). Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science, 296, 151–155.

    Article  CAS  Google Scholar 

  18. Janssen, M. L., Oyen, W. J., Dijkgraaf, I., Massuger, L. F., Frielink, C., Edwards, D. S., et al. (2002). Tumor targeting with radiolabeled alpha(v) beta(3) integrin binding peptides in a nude mouse model. Cancer Research, 62, 6146–6151.

    CAS  Google Scholar 

  19. Mizuguchi, H., Koizumi, N., Hosono, T., Utoguchi, N., Watanabe, Y., Kay, M. A., et al. (2001). A simplified system for constructing recombinant adenoviral vectors containing heterologous peptides in the HI loop of their fiber knob. Gene Therapy, 8, 730–735.

    Article  CAS  Google Scholar 

  20. Arap, W., Pasqualini, R., & Ruoslahti, E. (1998). Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279, 377–380.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Youjun Feng, a visiting scholar in Faculty of Medical Laboratory Science, Third Military Medical University (Present address: Department of Microbiology, University of Illinois at Urbana-Champaign (UIUC), USA) for critical reading of this manuscript. We are grateful to Prof. Wei-Ke Si and Dr. Hong Guo for their constructive suggestion and for kindly providing NHLF cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Ming Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, B., Li, W., Yang, J. et al. RGD-IL-24, A Novel Tumor-Targeted Fusion Cytokine: Expression, Purification and Functional Evaluation. Mol Biotechnol 41, 138–144 (2009). https://doi.org/10.1007/s12033-008-9115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9115-y

Keywords

Navigation