Skip to main content
Log in

An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new phenolic acid decarboxylase gene (blpad) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The full-length blpad encodes a 166-amino acid polypeptide with a predicted molecular mass and pI of 19,521 Da and 5.02, respectively. The recombinant BLPAD displayed maximum activity at 37 °C and pH 6.0. This enzyme possesses a broad substrate specificity and is able to decarboxylate p-coumaric, ferulic, caffeic, and sinapic acids at the relative ratios of specific activities 100:74.59:34.41:0.29. Kinetic constant K m values toward p-coumaric, ferulic, caffeic, and sinapic acids were 1.64, 1.55, 1.93, and 2.45 mM, and V max values were 268.43, 216.80, 119.07, and 0.78 U mg−1, respectively. In comparison with other phenolic acid decarboxylases, BLPAD exhibited remarkable organic solvent tolerance and good thermal stability. BLPAD showed excellent catalytic performance in biphasic organic/aqueous systems and efficiently converted p-coumaric and ferulic acids into 4-vinylphenol and 4-vinylguaiacol. At 500 mM of p-coumaric and ferulic acids, the recombinant BLPAD produced a total 60.63 g l−1 4-vinylphenol and 58.30 g l−1 4-vinylguaiacol with the conversion yields 97.02 and 70.96 %, respectively. The low yield and product concentration are the crucial drawbacks to the practical bioproduction of vinyl phenol derivatives using phenolic acid decarboxylases. These unusual properties make BLPAD a desirable biocatalyst for commercial use in the bioconversion of hydroxycinnamic acids to vinyl phenol derivatives via enzymatic decarboxylation in a biphasic organic/aqueous reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barthelmebs L, Diviès C, Cavin JF (2001) Expression in Escherichia coli of native and chimeric phenolic acid decarboxylases with modified enzymatic activities and method for screening recombinant E. coli strains expressing these enzymes. Appl Environ Microbiol 67:1063–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ben-Bassat A, Breinig S, Crum GA, Huang L, Altenbaugh AB, Rizzo N, Trotman RJ, Vannelli T, Sariaslani FS, Haynie SL (2007) Preparation of 4-vinylphenol using pHCA decarboxylase in a two-solvent medium. Org Process Res Dev 11:278–285

    Article  CAS  Google Scholar 

  • Bernini R, Mincione E, Barontini M, Provenzanoa G, Setti L (2007) Obtaining 4-vinylphenols by decarboxylation of natural 4-hydroxycinnamic acids under microwave irradiation. Tetrahedron 63:9663–9667

    Article  CAS  Google Scholar 

  • Cavin JF, Barthelmebs L, Diviès C (1997) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification and characterization. Appl Envion Microbiol 63:1939–1944

    CAS  Google Scholar 

  • Cavin JF, Dartois V, Diviès C (1998) Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis. Appl Environ Microbiol 64:1466–1471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Degrassi G, Polverino de Laureto P, Bruschi CV (1995) Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus. Appl Environ Microbiol 61:326–332

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doukyu N, Ogino H (2010) Organic solvent-tolerant enzymes. Biochem Eng J 48:270–282

    Article  CAS  Google Scholar 

  • Gu W, Yang JK, Lou ZY, Liang LM, Sun YN, Huang JW, Li XM, Cao Y, Meng ZH, Zhang KQ (2011) Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. p x6–4. PLoS One 6:e16262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang HK, Tokashiki M, Maeno S, Onaga S, Taira T, Ito S (2011) Purification and properties of phenolic acid decarboxylase from Candida guilliermondii. J Ind Microbiol Biotechnol 39:55–62

    Article  CAS  PubMed  Google Scholar 

  • Jung DH, Choi W, Choi KY, Jung E, Yun H, Kazlauskas RJ, Kim BG (2013) Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol 97:1501–1511

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Rodríguez H, Curiel JA, de las Rivas B, Mancheño JM, Muñoz R (2010) Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. J Ind Microbiol Biotechnol 37:617–624

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Yang JK, Li X, Gu W, Huang JW, Zhang KQ (2008) The metabolism of ferulic acid via 4-vinylguaiacol to vanillin by Enterobacter sp. Px6-4 isolated from vanilla root. Process Biochem 43:1132–1137

    Article  CAS  Google Scholar 

  • Licandro-Seraut H, Roussel C, Perpetuini G, Gervais P, Cavin JF (2013) Sensitivity to vinyl phenol derivatives produced by phenolic acid decarboxylase activity in Escherichia coli and several food-borne Gram-negative species. Appl Microbiol Biotechnol 97:7853–7864

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Zhao M, Wang TN, Zhao LY, Du MH, Li TL, Li DB (2012) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol 115:35–40

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Abraham TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83

    Article  CAS  PubMed  Google Scholar 

  • Mathew S, Abraham TE (2006) Bioconversions of ferulic acid, an hydroxycinnamic acid. Crit Rev Microbiol 32:115–125

    Article  CAS  PubMed  Google Scholar 

  • Micard V, Renard C, Colquhoun IJ, Thibault JF (1997) End-products of enzymic saccharification of beet pulp, with a special attention to feruloylated oligosaccharides. Carbohydr Polym 32:283–292

    Article  CAS  Google Scholar 

  • Morley KL, Grosse S, Leisch H, Lau PCK (2013) Antioxidant canolol production from a renewable feedstock via an engineered decarboxylase. Green Chem 15:3312–3317

    Article  CAS  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microb Biotechnol 56:296–314

    Article  CAS  Google Scholar 

  • Revanappa SB, Salimath PV (2011) Phenolic acid profiles and antioxidant activities of different wheat (Triticum aestivum l.) varieties. J Food Biochem 35:759–775

    Article  CAS  Google Scholar 

  • Rodríguez H, Landete JM, Curiel JA, de Rivas Las B, Mancheño JM, Muñoz R (2008) Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T). J Agric Food Chem 56:3068–3072

    Article  PubMed  Google Scholar 

  • Salgado JM, Rodríguez-Solana R, Curiel JA, de las Rivas B, Muñoz R, Domínguez JM (2012) Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T. Bioresource Technol 117:274–285

    Article  CAS  Google Scholar 

  • Sareen R, Mishra P (2008) Purification and characterization of organic solvent stable protease from Bacillus licheniformis. Appl Microbiol Biotechnol 79:399–405

    Article  CAS  PubMed  Google Scholar 

  • Saulnier L, Thibault JF (1999) Ferulic acid and diferulic acids as components of sugar beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402

    Article  CAS  Google Scholar 

  • Tilay A, Bule M, Kishenkumar J, Annapure U (2008) Preparation of ferulic acid from agricultural wastes: its improved extraction and purification. J Agric Food Chem 56:7644–7648

    Article  CAS  PubMed  Google Scholar 

  • Torres S, Martínez MA, Pandey A, Castro GR (2009) An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86. Bioresource Technol 100:896–902

    Article  CAS  Google Scholar 

  • Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Bäumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G (2004) The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol 7:204–211

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu D, Morimura S, Sawa T, Kida K, Nakai C, Maeda H (2005) Isolation, identification, and structure of a potent alkylperoxyl radical scavenger in crude oil, canolol. Biosci, Biotechnol, Biochem 69:1568–1574

    Article  CAS  Google Scholar 

  • Xiros C, Moukouli M, Topakas E, Christakopoulos P (2009) Factors affecting ferulic acid release from Brewer’s spent grain by Fusarium oxysporum enzymatic system. Bioresour Technol 100:5917–5921

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wang S, Lorrain MJ, Rho D, Abokitse K, Lau PC (2009) Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Appl Microbiol Biotechnol 84:867–876

    Article  CAS  PubMed  Google Scholar 

  • Zago A, Degrassi G, Bruschi CV (1995) Cloning, sequencing, and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid decarboxylase. Appl Environ Microbiol 61:4484–4486

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao R, Yun MS, Shiroma R, Ike M, Guan D, Tokuyasu K (2013) Integration of a phenolic-acid recovery step in the CaCO3 process for efficient fermentable-sugar recovery from rice straw. Bioresour Technol 148:422–437

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant (no. 31270628) from the National Natural Science Foundation of China, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and a Jiangsu postgraduate scientific research and innovation project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Li, L. & Ding, S. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives. Appl Microbiol Biotechnol 99, 5071–5081 (2015). https://doi.org/10.1007/s00253-014-6313-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6313-3

Keywords

Navigation