Skip to main content
Log in

Purification and properties of phenolic acid decarboxylase from Candida guilliermondii

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A heat-labile phenolic acid decarboxylase from Candida guilliermondii (an anamorph of Pichia guilliermondii) was purified to homogeneity by simple successive column chromatography within 3 days. The molecular mass was 20 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 36 kDa by gel-filtration chromatography, suggesting that the purified enzyme is a homodimer. The optimal pH and temperature were approximately 6.0 and 25°C. Characteristically, more than 50% of the optimal activity was observed at 0°C, suggesting that this enzyme is cold-adapted. The enzyme converted p-coumaric acid, ferulic acid, and caffeic acid to corresponding products with high specific activities of approximately 600, 530, and 46 U/mg, respectively. The activity was stimulated by Mg2+ ions, whereas it was completely inhibited by Fe2+, Ni2+, Cu2+, Hg2+, 4-chloromericuribenzoate, N-bromosuccinimide, and diethyl pyrocarbonate. The enzyme was inducible and expressed inside the cells moderately by ferulic acid and p-coumaric acid and significantly by non-metabolizable 6-hydroxy-2-naphthoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FA:

Ferulic acid

PCA:

p-Coumaric acid

CA:

Caffeic acid

4-VG:

4-Vinylguaiacol

4-VP:

4-Vinylphenol

6H2N:

6-Hydroxy-2-naphthoic acid

PAD:

Phenolic acid decarboxylase

CgPAD:

PAD from C. guilliermondii

PMSF:

Phenylmethanesulfonyl fluoride

MES:

2-Morpholinoethanesulfonic acid

SDS–PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

HPLC:

High-performance liquid chromatography

SD:

Standard deviation

YNB:

Yeast Nitrogen Base

References

  1. Ardiansyah, Ohsaki Y, Shirakawa H, Koseki T, Komai M (2008) Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J Agric Food Chem 56:2825–2830

    Article  PubMed  CAS  Google Scholar 

  2. Baranowski JD, Davidson PM, Nagel CW, Branen AL (1980) Inhibition of Saccharomyces cerevisiae by naturally occurring hydroxycinnamates. J Food Sci 45:592–594

    Article  CAS  Google Scholar 

  3. Barata A, Seborro F, Belloch C, Malfeito-Ferreira M, Loureiro V (2008) Ascomycetous yeast species recovered from grapes damaged by honeydew and sour rot. J Appl Microbiol 104:1182–1191

    Article  PubMed  CAS  Google Scholar 

  4. Barthelmebs L, Diviès C, Cavin JF (2000) Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl Environ Microbiol 66:3368–3375

    Article  PubMed  CAS  Google Scholar 

  5. Barthelmebs L, Lecomte B, Diviès C, Cavin JF (2000) Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator. J Bacteriol 182:6724–6731

    Article  PubMed  CAS  Google Scholar 

  6. Cavin JF, Barthelmebs L, Diviès C (1997) Molecular characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum: gene cloning, transcriptional analysis, overexpression in Escherichia coli, purification and characterization. Appl Envion Microbiol 63:1939–1944

    CAS  Google Scholar 

  7. Cavin JF, Barthelmebs L, Guzzo J, Beeumen JV, Samyn B, Travers JF, Diviès C (1997) Purification and characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum. FEMS Microbiol Lett 147:291–295

    Article  CAS  Google Scholar 

  8. Cavin JF, Dartois V, Diviès C (1998) Gene cloning, transcriptional analysis, purification, and characterization of phenolic acid decarboxylase from Bacillus subtilis. Appl Environ Microbiol 64:1466–1471

    PubMed  CAS  Google Scholar 

  9. Clarke AJ (1987) Essential tryptophan residues in the function of cellulase from Schizophyllum commune. Biochim Biophys Acta 912:424–431

    Article  PubMed  CAS  Google Scholar 

  10. Clausen M, Lamb CJ, Megnet R, Doerner PW (1994) PAD1 encodes phenylacrylic acid decarboxylase which confers resistance to cinnamic acid in Saccharomyces cerevisiae. Gene 142:107–112

    Article  PubMed  CAS  Google Scholar 

  11. Coghe S, Benoot K, Delvaux F, Vanderhaegen B, Delvaux FR (2004) Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. J Agric Food Chem 52:602–608

    Article  PubMed  CAS  Google Scholar 

  12. Degrassi G, Polverino de Laureto P, Bruschi CV (1995) Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus. Appl Environ Microbiol 61:326–332

    PubMed  CAS  Google Scholar 

  13. Dias L, Dias S, Sancho T, Stender H, Querol A, Malfeito-Ferreira M, Loureiro V (2003) Identification of yeasts isolated from wine-related environments and capable of producing 4-ethylphenol. Food Microbiol 20:567–574

    Article  CAS  Google Scholar 

  14. Donaghy JA, Kelly PF, McKay A (1999) Conversion of ferulic acid to 4-vinyl guaiacol by yeasts isolated from unpasteurised apple juice. J Sci Food Agric 79:453–456

    Article  CAS  Google Scholar 

  15. Edlin DAN, Narbad A, Gasson MJ, Dickinson JR, Lloyd D (1998) Purification and characterization of hydroxycinnamate decarboxylase from Brettanomyces anomalus. Enzyme Microb Technol 22:232–239

    Article  CAS  Google Scholar 

  16. Fallico B, Lanza MC, Maccarone E, Asmundo CN, Rapisarda P (1996) Role of hydroxycinnamic acids and vinylphenols in the flavor alteration of blood orange juices. J Agric Food Chem 44:2654–2657

    Article  CAS  Google Scholar 

  17. Godoy L, Martínez C, Carrasco N, Ganga MA (2008) Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis. Int J Food Microbiol 127:6–11

    Article  PubMed  CAS  Google Scholar 

  18. Goodey AR, Tubb RS (1982) Genetic and biochemical analysis of the ability of Saccharomyces cerevisiae to decarboxylate cinnamic acids. J Gen Microbiol 128:2615–2620

    CAS  Google Scholar 

  19. Gury J, Seraut H, Tran NP, Barthelmebs L, Weidmann S, Gervais P, Cavin JF (2009) Inactivation of PadR, the repressor of the phenolic acid stress response, by molecular interaction with Usp1, a universal stress protein from Lactobacillus plantarum, in Escherichia coli. Appl Environ Microbiol 75:5273–5283

    Article  PubMed  CAS  Google Scholar 

  20. Hashidoko Y, Tanaka T, Tahara S (2001) Induction of 4-hydroxycinnamate decarboxylase in Klebsiella oxytoca cells exposed to substrates and non-substrate 4-hydroxycinnamate analogs. Biosci Biotechnol Biochem 65:2604–2612

    Article  PubMed  CAS  Google Scholar 

  21. Huang Z, Dostal L, Rosazza JP (1994) Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens. J Bacteriol 176:5912–5918

    PubMed  CAS  Google Scholar 

  22. Huang MT, Smart RC, Wong CQ, Conney AH (1988) Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 48:5941–5946

    PubMed  CAS  Google Scholar 

  23. Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T, Ito S (1998) Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl Environ Microbiol 64:3282–3289

    PubMed  CAS  Google Scholar 

  24. Ito S (2009) Features and applications of microbial sugar epimerases. Appl Microbiol Biotechnol 84:1053–1060

    Article  PubMed  CAS  Google Scholar 

  25. Jung EH, Kim SR, Hwang IK, Ha TY (2007) Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 55:9800–9804

    Article  PubMed  CAS  Google Scholar 

  26. Kawaminami S, Ozaki K, Sumitomo N, Hayashi Y, Ito S, Shimada I, Arata Y (l994) A stable isotope-aided NMR study of the active site of an endoglucanase from a strain of Bacillus. J Biol Chem 269:28752–28756

    Google Scholar 

  27. Landete JM, Rodríguez H, Curiel JA, de las Rivas B, Mancheño JM, Muñoz R (2010) Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84. J Ind Microbiol Biotechnol 37:617–624

    Article  PubMed  CAS  Google Scholar 

  28. Lin FH, Lin JY, Gupta RD, Tournas JA, Burch JA, Selim MA, Monteiro-Riviere NA, Grichnik JM, Zielinski J, Pinnell SR (2005) Ferulic acid stabilizes a solution of vitamins C and E and doubles its photoprotection of skin. J Invest Dermatol 125:826–832

    Article  PubMed  CAS  Google Scholar 

  29. Maoka T, Tanimoto F, Sano M, Tsurukawa K, Tsuno T, Tsujiwaki S, Ishimaru K, Takii K (2008) Effects of dietary supplementation of ferulic acid and gamma-oryzanol on integument color and suppression of oxidative stress in cultured red sea bream, Pagrus major. J Oleo Sci 57:133–137

    Article  PubMed  CAS  Google Scholar 

  30. Martorell P, Barata A, Malfeito-Ferreira M, Fernández-Espinar MT, Loureiro V, Querol A (2006) Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine related sources. Int J Food Microbiol 106:79–84

    Article  PubMed  CAS  Google Scholar 

  31. Mathew S, Abraham TE (2004) Ferulic acid: an antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit Rev Biotechnol 24:59–83

    Article  PubMed  CAS  Google Scholar 

  32. Mathew S, Abraham TE (2006) Bioconversions of ferulic acid, a hydroxycinnamic acid. Crit Rev Microbiol 32:115–125

    Article  PubMed  CAS  Google Scholar 

  33. Mukai N, Masaki K, Fujii T, Kawamukai M, Iefuji H (2010) PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng 109:564–569

    Article  PubMed  CAS  Google Scholar 

  34. Oelofse A, Pretorius IS, du Toit M (2008) Significance of Brettanomyces and Dekkera during winemaking: a synoptic review. S Afr J Enol Vitic 29:128–144

    CAS  Google Scholar 

  35. Pereira RS, Mussatto SI, Roberto IC (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J Ind Microbiol Biotechnol 38:71–78

    Article  PubMed  CAS  Google Scholar 

  36. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314

    Article  PubMed  CAS  Google Scholar 

  37. Rodríguez H, Landete JM, Curiel JA, de las Rivas B, Mancheño JM, Muñoz R (2008) Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748T. J Agric Food Chem 56:3068–3072

    Article  PubMed  Google Scholar 

  38. Saez JS, Lopes CA, Kirs VC, Sangorrin MP (2010) Enhanced volatile phenols in wine fermented with Saccharomyces cerevisiae and spoiled with Pichia guilliermondii and Dekkera bruxellensis. Lett Appl Microbiol 51:170–176

    PubMed  CAS  Google Scholar 

  39. Smit A, Cordero Otero RR, Lambrechts MG, Pretorius IS, van Rensburg P (2003) Enhancing volatile phenol concentrations in wine by expressing various phenolic acid decarboxylase genes in Saccharomyces cerevisiae. J Agric Food Chem 51:4909–4915

    Article  PubMed  CAS  Google Scholar 

  40. Sri Balasubashini M, Rukkumani R, Menon VP (2003) Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetol 40:118–122

    Article  PubMed  CAS  Google Scholar 

  41. Stead D (1995) The effect of hydroxycinnamic acids and potassium sorbate on the growth of 11 strains of spoilage yeasts. J Appl Bacteriol 78:82–87

    Article  PubMed  CAS  Google Scholar 

  42. Suezawa Y, Suzuki M (2007) Bioconversion of ferulic acid to 4-vinylguaiacol and 4-ethylguaiacol and of 4-vinylguaiacol to 4-ethylguaiacol by halotolerant yeasts belonging to the genus Candida. Biosci Biotechnol Biochem 71:1058–1062

    Article  PubMed  CAS  Google Scholar 

  43. Sutherland JB, Tanner LA, Moore JD, Freeman JP, Deck J, Williams AJ (1995) Conversion of ferulic acid to 4-vinylguaiacol by yeasts isolated from frozen concentrated orange juice. J Food Protect 58:1260–1262

    CAS  Google Scholar 

  44. Thurston PA, Tubb RS (1981) Screening yeast strains for their ability to produce phenolic off-flavours: a simple method for determining phenols in wort and beer. J Inst Brew 87:177–179

    Google Scholar 

  45. Tran NP, Gury J, Dartois V, Nguyen TKC, Seraut H, Barthelmebs L, Gervais P, Cavin JF (2008) Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis. J Bacteriol 190:3213–3224

    Article  PubMed  CAS  Google Scholar 

  46. Van Beek S, Priest FG (2000) Decarboxylation of substituted cinnamic acids by lactic acid bacteria isolated during malt whisky fermentation. Appl Environ Microbiol 66:5322–5328

    Article  PubMed  Google Scholar 

  47. Vanbeneden N, Gils F, Delvaux F, Delvaux FR (2008) Formation of 4-vinyl and 4-ethyl derivatives from hydroxycinnamic acids: occurrence of volatile phenolic flavour compounds in beer and distribution of Pad1-activity among brewing yeasts. Food Chem 107:221–230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Toyama and M. Yasuda at University of the Ryukyus and K. Watanabe at Saga University for invaluable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HK., Tokashiki, M., Maeno, S. et al. Purification and properties of phenolic acid decarboxylase from Candida guilliermondii . J Ind Microbiol Biotechnol 39, 55–62 (2012). https://doi.org/10.1007/s10295-011-0998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0998-4

Keywords

Navigation