Skip to main content

Advertisement

Log in

Kinetic exploration of nitrate-accumulating microalgae for nutrient recovery

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Within sustainable resource management, the recovery of nitrogen and phosphorus nutrients from waste streams is becoming increasingly important. Although the use of microalgae has been described extensively in environmental biotechnology, the potential of nitrate-accumulating microalgae for nutrient recovery has not been investigated yet. The ability of these marine microorganisms to concentrate environmental nitrate within their biomass is remarkable. The aim of this study was to investigate the application potential of nitrate-accumulating diatoms for nutrient recovery from marine wastewaters. The intracellular nitrate storage capacity was quantified for six marine diatom strains in synthetic wastewater. Amphora coffeaeformis and Phaeodactylum tricornutum stored the highest amount of nitrate with respectively 3.15 and 2.10 g N L−1 of cell volume, which accounted for 17.3 and 4.6 %, respectively, of the total nitrogen content. The growth and nitrate and phosphate uptake of both diatoms were further analyzed and based on these features P. tricornutum showed the highest potential for nutrient recovery. A mathematical model was developed which included intracellular nitrate storage and the kinetic parameters were derived for P. tricornutum. Furthermore, a simulation study was performed to compare the performance of a proposed microalgal nutrient recovery unit with a conventional denitrification system for marine wastewater treatment. Overall, this study demonstrates the potential application of P. tricornutum for saline wastewater treatment with concurrent nitrogen and phosphorus recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28(1):64–70. doi:10.1016/j.ecoleng.2006.04.003

    Article  Google Scholar 

  • Audenaert WTM, Callewaert M, Nopens I, Cromphout J, Vanhoucke R, Dumoulin A, Dejans P, Van Hulle SWH (2010) Full-scale modelling of an ozone reactor for drinking water treatment. Chem Eng J 157(2–3):551–557. doi:10.1016/j.cej.2009.12.051

    Article  CAS  Google Scholar 

  • Baldia SF, Nishijima T, Hata Y, Fukami K (1991) Growth characteristics of a blue-green alga Spirulina platensis for nitrogen utilization. Nippon Suisan Gakkaishi 57(4):645–654. doi:10.2331/suisan.57.645

    Article  Google Scholar 

  • Berges JA, Franklin DJ, Harrison PJ (2001) Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J Phycol 37(6):1138–1145 doi:10.1046/j.1529-8817.2001.01052.x

  • Bernard O, Remond B (2012) Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol 123:520–527. doi:10.1016/j.biortech.2012.07.022

    Article  PubMed  CAS  Google Scholar 

  • Bode A, Botas JA, Fernandez E (1997) Nitrate storage by phytoplankton in a coastal upwelling environment. Mar Biol 129(3):399–406. doi:10.1007/s002270050180

    Article  CAS  Google Scholar 

  • Bougaran G, Bernard O, Sciandra A (2010) Modeling continuous cultures of microalgae colimited by nitrogen and phosphorus. J Theor Biol 265(3):443–454. doi:10.1016/j.jtbi.2010.04.018

    Article  PubMed  CAS  Google Scholar 

  • Cai T, Park SY, Li YB (2013) Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew Sust Energ Rev 19:360–369. doi:10.1016/j.rser.2012.11.030

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81. doi:10.1016/j.biortech.2010.06.159

    Article  PubMed  CAS  Google Scholar 

  • Collos Y, Vaquer A, Souchu P (2005) Acclimation of nitrate uptake by phytoplankton to high substrate levels. J Phycol 41(3):466–478 doi:10.1111/j.1529-8817.2005.00067.x

  • Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W (2007) Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270(1–4):1–14. doi:10.1016/j.aquaculture.2007.05.006

    Article  CAS  Google Scholar 

  • Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31(7):1701–1707. doi:10.1016/s0043-1354(96)00093-0

    Article  CAS  Google Scholar 

  • De La Rocha CL, Terbruggen A, Volker C, Hohn S (2010) Response to and recovery from nitrogen and silicon starvation in Thalassiosira weissflogii: growth rates, nutrient uptake and C, Si and N content per cell. Mar Ecol Prog Ser 412:57–68. doi:10.3354/meps08701

    Article  Google Scholar 

  • De Pauw DJW, Vanrolleghem PA (2006) Practical aspects of sensitivity function approximation for dynamic models. Math Comput Model Dyn Syst 12(5):395–414. doi:10.1080/13873950600723301

    Article  Google Scholar 

  • Decostere B, Janssens N, Alvarado A, Maere T, Goethals P, Van Hulle SWH, Nopens I (2013) A combined respirometer-titrimeter for the determination of microalgae kinetics: experimental data collection and modelling. Chem Eng J 222:85–93. doi:10.1016/j.cej.2013.01.103

    Article  CAS  Google Scholar 

  • Desloover J, Vlaeminck SE, Clauwaert P, Verstraete W, Boon N (2012) Strategies to mitigate N2O emissions from biological nitrogen removal systems. Curr Opin Biotechnol 23(3):474–482. doi:10.1016/j.copbio.2011.12.030

    Article  PubMed  CAS  Google Scholar 

  • Dortch Q (1982) Effect of growth-conditions on accumulation of internal nitrate, ammonium, amino-acids and proteins in marine diatoms. J Exp Mar Biol Ecol 61(3):243–264 doi:10.1016/0022-0981(82)90072-7

  • Dortch Q, Clayton JR, Thoresen SS, Ahmed SI (1984) Species differences in accumulation of nitrogen pools in phytoplankton. Mar Biol 81(3):237–250. doi:10.1007/bf00393218

    Article  CAS  Google Scholar 

  • Fabris M, Matthijs M, Rombauts S, Vyverman W, Goossens A, Baart GJE (2012) The metabolic blueprint of Phaeodactylum tricornutum reveals an eukaryotic Entner–Doudoroff glycolytic pathway. Plant J 70(6):1004–1014. doi:10.1111/j.1365-313X.2012.04941.x

    Article  PubMed  CAS  Google Scholar 

  • Fawley MW (1984) Effects of light intensity and temperature interactions on growth characteristics of Phaeodactylum tricornutum. J Phycol 20(1):67–72. doi:10.1111/j.0022-3646.1984.00067.x

    Article  Google Scholar 

  • Filali R, Badea AC, Tebbani S, Dumur D, Diop S, Pareau D, Lopes F, Ieee (2011) Optimization of the interval approach for Chlorella vulgaris biomass estimation. IEEE, New York

    Google Scholar 

  • Greenberg AE, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC

  • Habib MAB, Parvin M, Huntington TC, Hasan MR (2008) A review on culture, production and use of Spirulina as food for humans and feed for domestic animals and fish. Food and Agriculture Organization of the United Nations (FAO), Rome, p 41

    Google Scholar 

  • Hamlin HJ, MichaelS JT, Beaulaton CM, Graham WF, Dutt W, Steinbach P, Losordo TM, Schrader KK, Main KL (2008) Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquac Eng 38(2):79–92. doi:10.1016/j.aquaeng.2007.11.003

    Article  Google Scholar 

  • Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27(8):1737–1746. doi:10.1007/s11274-010-0632-z

    Article  Google Scholar 

  • Henze M, Gujer W, Mino T, van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2D and ASM3 IWA Scientific and Technical Report. vol 9. IWA, London, UK, p 130

  • Henze M, Grady CPLJ, Gujer W, Marais GvR, Matsuo T (1986) Activated sludge model no. 1. IAWPRC Scientific and Technical Report No 1. IAWPRC London, UK

  • Hoppenrath M, Beszteri B, Drebes G, Halliger H, Van Beusekom JEE, Janisch S, Wiltshire KH (2007) Thalassiosira species (Bacillariophyceae, Thalassiosirales) in the North Sea at Helgoland (German bight) and sylt (North Frisian Wadden Sea) — a first approach to assessing diversity. Eur J Phycol 42(3):271–288. doi:10.1080/09670260701352288

    Article  Google Scholar 

  • Jiang T, Liu X, Kennedy MD, Schippers JC, Vanrolleghem PA (2005) Calibrating a side-stream membrane bioreactor using activated sludge model no. 1. Water Sci Technol 52(10–11):359–367

    PubMed  CAS  Google Scholar 

  • Kamp A, de Beer D, Nitsch JL, Lavik G, Stief P (2011) Diatoms respire nitrate to survive dark and anoxic conditions. Proc Natl Acad Sci 108(14):5649–5654. doi:10.1073/pnas.1015744108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Labelle MA, Juteau P, Jolicoeur M, Villemur R, Parent S, Comeau Y (2005) Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor. Water Res 39(14):3409–3417. doi:10.1016/j.watres.2005.06.001

    Article  PubMed  CAS  Google Scholar 

  • Larsen TA, Maurer M, Udert KM, Lienert J (2007) Nutrient cycles and resource management: implications for the choice of wastewater treatment technology. Water Sci Technol 56(5):229–237. doi:10.2166/wst.2007.576

    Article  PubMed  CAS  Google Scholar 

  • Lomas MW, Glibert PM (2000) Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. J Phycol 36(5):903–913. doi:10.1046/j.1529-8817.2000.99029.x

    Article  CAS  Google Scholar 

  • Lourenco SO, Barbarino E, Lavin PL, Marque UML, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39(1):17–32. doi:10.1080/0967026032000157156

    Article  CAS  Google Scholar 

  • Maurer M, Pronk W, Larsen TA (2006) Treatment processes for source-separated urine. Water Res 40(17):3151–3166. doi:10.1016/j.watres.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  • Menasveta P, Panritdam T, Sihanonth P, Powtongsook S, Chuntapa B, Lee P (2001) Design and function of a closed, recirculating seawater system with denitrification for the culture of black tiger shrimp broodstock. Aquac Eng 25(1):35–49. doi:10.1016/s0144-8609(01)00069-3

    Article  Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96(4):451–458. doi:10.1016/j.biortech.2004.05.026

    Article  PubMed  CAS  Google Scholar 

  • Mulder A (2003) The quest for sustainable nitrogen removal technologies. Water Sci Technol 48(1):67–75

    PubMed  CAS  Google Scholar 

  • Needoba JA, Harrison PJ (2004) Influence of low light and a light: dark cycle on NO3 uptake, intracellular NO3 , and nitrogen isotope fractionation by marine phytoplankton. J Phycol 40(3):505–516. doi:10.1111/j.1529-8817.2004.03171.x

    Article  CAS  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4):308–313

    Article  Google Scholar 

  • Ogbonna JC, Yada H, Tanaka H (1995) Light-supply coefficient - a new engineering parameter for photobioreactor design. J Ferment Bioeng 80(4):369–376 doi:10.1016/0922-338x(95)94206-7

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi:10.1038/nmeth.2089

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Maruyama T, Numata H, Sato H, Asakawa M (2003) Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel: towards zero emission. Aquac Eng 29(3–4):165–182. doi:10.1016/j.aquaeng.2003.08.001

    Article  Google Scholar 

  • Tyrrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400(6744):525–531. doi:10.1038/22941

    Article  CAS  Google Scholar 

  • Valenzuela J, Carlson RP, Gerlach R, Cooksey K, Peyton BM, Bothner B, Fields MW (2013) Nutrient resupplementation arrests bio-oil accumulation in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97(15):7049–7059. doi:10.1007/s00253-013-5010-y

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van den Hende S, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities. Biotechnol Adv 30(6):1405–1424. doi:10.1016/j.biotechadv.2012.02.015

    Article  Google Scholar 

  • van Rijn J (2013) Waste treatment in recirculating aquaculture systems. Aquac Eng 53:49–56. doi:10.1016/j.aquaeng.2012.11.010

    Article  Google Scholar 

  • Vanhooren H, Meirlaen J, Amerlinck Y, Claeys F, Vangheluwe H, Vanrolleghem PA (2003) WEST: modelling biological wastewater treatment. J Hydroinformatics 5:27–50

    Google Scholar 

  • Verstraete W, Vlaeminck SE (2011) ZeroWasteWater: short-cycling of wastewater resources for sustainable cities of the future. Int J Sustain Dev World Ecol 18(3):253–264. doi:10.1080/13504509.2011.570804

    Article  Google Scholar 

  • Verstraete W, de Caveye PV, Diamantis V (2009) Maximum use of resources present in domestic “used water”. Bioresour Technol 100(23):5537–5545. doi:10.1016/j.biortech.2009.05.047

    Article  PubMed  CAS  Google Scholar 

  • Vlaeminck SE, De Clippeleir H, Verstraete W (2012) Microbial resource management of one-stage partial nitritation/anammox. Microb Biotechnol 5(3):433–448. doi:10.1111/j.1751-7915.2012.00341.x

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329(5993):796–799. doi:10.1126/science.1189003

    Article  PubMed  CAS  Google Scholar 

  • Yuan ZG, Pratt S, Batstone DJ (2012) Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotechnol 23(6):878–883. doi:10.1016/j.copbio.2012.08.001

    Article  PubMed  CAS  Google Scholar 

  • Zhou X (1993) A new method with high confidence for validation of computer simulation models for flight systems. Chin J Syst Eng Electron 4(4):43–52

    Google Scholar 

Download references

Acknowledgments

J.C. was supported by a PhD grant from the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Vlaanderen, SB-101187). S.E.V. was supported as a postdoctoral fellow from the Research Foundation Flanders (FWO-Vlaanderen). The authors thank Christophe Van de Weygert for assistance with the algae cultivation and Alberto Scoma, Marta Coma Bech, and Stephen J. Andersen for inspiring scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Boon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppens, J., Decostere, B., Van Hulle, S. et al. Kinetic exploration of nitrate-accumulating microalgae for nutrient recovery. Appl Microbiol Biotechnol 98, 8377–8387 (2014). https://doi.org/10.1007/s00253-014-5854-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5854-9

Keywords

Navigation