Skip to main content
Log in

Acclimation of the microalga Amphidinium carterae to different nitrogen sources: potential application in the treatment of marine aquaculture effluents

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

There is growing interest in finding microalgae species that efficiently convert dissolved nutrients contained in aquaculture effluents into highly valuable biomass. The different nitrogen forms that are present in aquaculture effluents are particularly concerning. This study demonstrated that the dinoflagellate Amphidinium carterae can acclimate to both combined and sole nitrogen sources such as nitrate, ammonium, and urea over a wide concentration range. As far as is known, it is the first time that a species of the genus Amphidinium has been successfully cultured with urea as the sole source of nitrogen. In the presence of 882 μM of nitrate, A. carterae tolerated urea concentrations up to 5000 μM. With respect to ammonium-N tolerance, it has been observed that it is lethal at concentrations higher than 441 μM. A robust laboratory experimental design was critical for accurately assessing this acclimation. Alternative N sources did not affect the production of high-value specific polyketide secondary metabolites from A. carterae, such as amphidinols, with an average concentration of 0.435 ± 0.038% biomass d.w. An analysis of the symbiotic microbial assemblages developed in a long-term A. carterae culture in an open raceway pond, and the fact that it is able to metabolize all three nitrogen sources simultaneously, supports the idea that this microalga has the potential to be successfully cultured with aquaculture effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abadie E, Kaci L, Berteaux T, Hess P, Sechet V, Masseret E, Rolland J, Laabir M (2015) Effect of nitrate, ammonium and urea on growth and pinnatoxin G production of Vulcanodinium rugosum. Mar Drugs 13:5642–5656

    PubMed  PubMed Central  Google Scholar 

  • Abreu AC, Molina-Miras A, Aguilera-Sáez LM, López-Rosales L, Cerón-García MC, Sánchez-Mirón A, Olmo-García L, Carrasco-Pancorbo A, García-Camacho F, Molina-Grima E (2019) Production of amphidinols and other bioproducts of interest by the marine microalga Amphidinium carterae unraveled by nuclear magnetic resonance metabolomics approach coupled to multivariate data analysis. J Agric Food Chem 67:9667–9682

    CAS  PubMed  Google Scholar 

  • American Public Health Association (APHA), (1995) In: Standard methods for the examination of water and wastewater. American water works association and water pollution control federation. APHA, Washington DC.

  • Andreotti V, Chindris A, Brundu G, Vallainc D, Francavilla M, García J (2017) Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Chem Ecol 33:750–761

    CAS  Google Scholar 

  • Andreotti V, Solimeno A, Chindris A, Marazzi F, García J (2019) Growth of Tetraselmis suecica and Dunaliella tertiolecta in aquaculture wastewater: numerical simulation with the BIO_ALGAE model. Water Air Soil Pollut 230:60

    Google Scholar 

  • ASTM D1426-08, (2008) Standard Test Methods for Ammonia Nitrogen In Water, ASTM International, West Conshohocken, PA, www.astm.org

  • Attasat S, Wanichpongpan P, Ruenglertpanyakul W (2013) Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency. Water Sci Technol 67:271–277

    CAS  PubMed  Google Scholar 

  • Azaman SNA, Nagao N, Yusoff FM, Tan SW, Yeap SK (2017) A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. PeerJ 5:e3473

    PubMed  PubMed Central  Google Scholar 

  • Borges M-T, Silva P, Moreira L, Soares R (2005) Integration of consumer-targeted microalgal production with marine fish effluent biofiltration–a strategy for mariculture sustainability. J Appl Phycol 17:187–197

    Google Scholar 

  • Burkholder JM, Glibert PM, Skelton HM (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93

    CAS  Google Scholar 

  • Chen J, Wei D, Pohnert G (2017) Rapid estimation of astaxanthin and the carotenoid-to-chlorophyll ratio in the green microalga Chromochloris zofingiensis using flow cytometry. Mar Drugs 15:231–253

    PubMed Central  Google Scholar 

  • Chen J-H, Kato Y, Matsuda M, Chen C-Y, Nagarajan D, Hasunuma T, Kondo A, Dong C-D, Lee D-J, Chang J-S (2019) A novel process for the mixotrophic production of lutein with Chlorella sorokiniana MB-1-M12 using aquaculture wastewater. Bioresour Technol 290:121786

    CAS  PubMed  Google Scholar 

  • Collos Y, Harrison PJ (2014) Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull 80:8–23

    CAS  PubMed  Google Scholar 

  • Collos Y, Vaquer A, Laabir M, Abadie E, Laugier T, Pastoureaud A, Souchu P (2007) Contribution of several nitrogen sources to growth of Alexandrium catenella during blooms in Thau lagoon, southern France. Harmful Algae 6:781–789

    CAS  Google Scholar 

  • Contreras A, García F, Molina E, Merchuk JC (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng 60:317–325

  • Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W (2007) Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270:1–14

    CAS  Google Scholar 

  • Dagenais-Bellefeuille S, Morse D (2013) Putting the N in dinoflagellates. Front Microbiol 4:369

    PubMed  PubMed Central  Google Scholar 

  • Davidson K, Gowen RJ, Tett P, Bresnan E, Harrison PJ, McKinney A, Milligan S, Mills DK, Silke J, Crooks A-M (2012) Harmful algal blooms: how strong is the evidence that nutrient ratios and forms influence their occurrence? Estuar Coast Shelf Sci 115:399–413

    CAS  Google Scholar 

  • Deviller G, Aliaume C, Nava MAF, Casellas C, Blancheton JP (2004) High-rate algal pond treatment for water reuse in an integrated marine fish recirculating system: effect on water quality and sea bass growth. Aquaculture 235:331–344

    Google Scholar 

  • Dixon G, Syrett P (1988a) The growth of dinoflagellates in laboratory cultures. New Phytol 109:297–302

    Google Scholar 

  • Dixon GK, Syrett PJ (1988b) Interactions between the uptake and assimilation of inorganic nitrogen and carbon in Amphidinium spp. (Dinophyceae). J Exp Bot 39:1299–1311

    CAS  Google Scholar 

  • Erickson RJ (1985) An evaluation of mathematical models for the effects of pH and temperature on ammonia toxicity to aquatic organisms. Water Res 19:1047–1058

    CAS  Google Scholar 

  • Gallardo-Rodríguez JJ, Sánchez-Mirón A, Cerón-García MC, Belarbi EH, García-Camacho F, Chisti Y, Molina-Grima E (2009) Macronutrients requirements of the dinoflagellate Protoceratium reticulatum. Harmful Algae 8:239–246

    Google Scholar 

  • Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales L, Chisti Y, Molina-Grima E (2012) Bioactives from microalgal dinoflagellates. Biotechnol Adv 30:1673–1684

    PubMed  Google Scholar 

  • Gao F, Li C, Yang Z-H, Zeng G-M, Feng L-J, J-z L, Liu M, H-w C (2016) Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecol Eng 92:55–61

    Google Scholar 

  • García-Camacho F, Sánchez-Miron A, Molina-Grima E, Camacho-Rubio F, Merchuck JC (2012) A mechanistic model of photosynthesis in microalgae including photoacclimation dynamics. J Theor Biol 304:1–15

    PubMed  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of Marine Invertebrate Animals. Springer, Boston, MA, pp 29–60

  • Guo Z, Liu Y, Guo H, Yan S, Mu J (2013) Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. J Environ Sci 25:S85–S88

    Google Scholar 

  • Halfhide T, Åkerstrøm A, Lekang OI, Gislerød HR, Ergas SJ (2014) Production of algal biomass, chlorophyll, starch and lipids using aquaculture wastewater under axenic and non-axenic conditions. Algal Res 6:152–159

    Google Scholar 

  • Harisson PT, Berges JA (2005) Marine culture media. In: Andersen R (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 21–34

    Google Scholar 

  • Harrison WG (1976) Nitrate metabolism of the red tide dinoflagellate Gonyaulax polyedra Stein. J Exp Mar Biol Ecol 21:199–209

    CAS  Google Scholar 

  • Henderson TJ (2002) Quantitative NMR spectroscopy using coaxial inserts containing a reference standard: purity determinations for military nerve agents. Anal Chem 74:191–198

    CAS  PubMed  Google Scholar 

  • Ho K-C, Xu SJ-L, Wu K-C, Lee FW-F (2013) Effective growth of dinoflagellate Prorocentrum minimum by cultivating the cells using municipal wastewater as nutrient source. Water Sci Technol 68:1100–1106

    CAS  PubMed  Google Scholar 

  • Hussenot J, Lefebvre S, Brossard N (1998) Open-air treatment of wastewater from land-based marine fish farms in extensive and intensive systems: current technology and future perspectives. Aquat Living Resour 11:297–304

    Google Scholar 

  • Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16

    CAS  PubMed  Google Scholar 

  • Jeanfils J, Canisius M, Burlion N (1993) Effect of high nitrate concentrations on growth and nitrate uptake by free-living and immobilized Chlorella vulgaris cells. J Appl Phycol 5:369–374

    CAS  Google Scholar 

  • Jegatheesan V, Shu L, Visvanathan C (2011) Aquaculture effluent: impacts and remedies for protecting the environment and human health. In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, Amsterdam, pp 123–135

    Google Scholar 

  • Jing X, Lin S, Zhang H, Koerting C, Yu Z (2017) Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLoS One 12:e0187837e

    Google Scholar 

  • Khatoon H, Haris H, Rahman NA, Zakaria MN, Begum H, Mian S (2018) Growth, proximate composition and pigment production of Tetraselmis chuii cultured with aquaculture wastewater. J Ocean Univ China 17:641–646

    CAS  Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390

    Google Scholar 

  • Lauritano C, De Luca D, Ferrarini A, Avanzato C, Minio A, Esposito F, Ianora A (2017) De novo transcriptome of the cosmopolitan dinoflagellate Amphidinium carterae to identify enzymes with biotechnological potential. Sci Rep 7:11701

    PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Shpigel M, Freeman S, Zmora O, Mcleod S, Bowen S, Pearson M, Szostek A (2003) Physiological ecology and possible control strategy of a toxic marine dinoflagellate, Amphidinium sp., from the benthos of a mariculture pond. Aquaculture 217:351–371

    Google Scholar 

  • Levasseur M, Thompson PA, Harrison PJ (1993) Physiological acclimation of marine phytoplankton to different nitrogen sources. J Phycol 29:587–595

    CAS  Google Scholar 

  • Li M, Callier MD, Blancheton J-P, Galès A, Nahon S, Triplet S, Geoffroy T, Menniti C, Fouilland E, Roque d’orbcastel E (2019) Bioremediation of fishpond effluent and production of microalgae for an oyster farm in an innovative recirculating integrated multi-trophic aquaculture system. Aquaculture 504:314–325

    CAS  Google Scholar 

  • Liu C-L, Place AR (2017) Use of antibiotics for maintenance of axenic cultures of Amphidinium carterae for the analysis of translation. Mar Drugs 15:242

    PubMed Central  Google Scholar 

  • Liu M, Huang X, Zhang R, Li C, Gu B (2018) Uptake of urea nitrogen by Oocystis borgei in prawn (Litopenaeus vannamei) aquaculture ponds. Bull Environ Contam Toxicol 101:586–591

    CAS  PubMed  Google Scholar 

  • López-Rodríguez M, Cerón-García M, López-Rosales L, González-López C, Molina-Miras A, Ramírez-González A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2019) Assessment of multi-step processes for an integral use of the biomass of the marine microalga Amphidinium carterae. Bioresour Technol 282:370–377

  • López-Rosales L, García-Camacho F, Sánchez-Mirón A, Contreras-Gómez A, Molina-Grima E (2015) An optimisation approach for culturing shear-sensitive dinoflagellate microalgae in bench-scale bubble column photobioreactors. Bioresour Technol 197:375–382

    PubMed  Google Scholar 

  • López-Rosales L, García-Camacho F, Sánchez-Mirón A, Beato EM, Chisti Y, Grima EM (2016) Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresour Technol 216:845–855

    PubMed  Google Scholar 

  • Marinho YF, Brito LO, Silva Campos CVF, Severi W, Andrade HA, Galvez AO (2017) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48:4155–4164

    CAS  Google Scholar 

  • Matantseva O, Skarlato S, Vogts A, Pozdnyakov I, Liskow I, Schubert H, Voss M (2016) Superposition of individual activities: urea-mediated suppression of nitrate uptake in the dinoflagellate Prorocentrum minimum revealed at the population and single-cell levels. Front Microbiol 7:1310

    PubMed  PubMed Central  Google Scholar 

  • Milhazes-Cunha H, Otero A (2017) Valorisation of aquaculture effluents with microalgae: the integrated multi-trophic aquaculture concept. Algal Res 24:416–424

    Google Scholar 

  • Molina-Miras A, López-Rosales L, Sánchez-Mirón A, Cerón-García MC, Seoane-Parra S, García-Camacho F, Molina-Grima E (2018a) Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: production of carotenoids and fatty acids. Bioresour Technol 265:257–267

    CAS  PubMed  Google Scholar 

  • Molina-Miras A, Morales-Amador A, de Vera C, López-Rosales L, Sánchez-Mirón A, Souto M, Fernández J, Norte M, García-Camacho F, Molina-Grima E (2018b) A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: isolation of a novel analogue. Algal Res 31:87–98

    Google Scholar 

  • Nasir NM, Bakar NSA, Lananan F, Hamid SHA, Lam SS, Jusoh A (2015) Treatment of African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, Chlorella sp. with Aspergillus niger bio-harvesting. Bioresour Technol 190:492–498

    PubMed  Google Scholar 

  • Pagand P, Blancheton JP, Lemoalle J, Casellas C (2000) The use of high rate algal ponds for the treatment of marine effluent from a recirculating fish rearing system. Aquac Res 31:729–736

    Google Scholar 

  • Podevin M, De Francisci D, Holdt SL, Angelidaki I (2015) Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. J Appl Phycol 27:1415–1423

    CAS  Google Scholar 

  • Przytocka-Jusiak M, Mlynarczyk A, Kulesza M, Mycielski R (1977) Properties of Chlorella vulgaris strain adapted to high concentration of ammonium nitrogen. Acta Microbiol Pol 26:185–197

    CAS  PubMed  Google Scholar 

  • Riaño B, Molinuevo B, García-González M (2011) Treatment of fish processing wastewater with microalgae-containing microbiota. Bioresour Technol 102:10829–10833

    PubMed  Google Scholar 

  • Schulz C, Gelbrecht J, Rennert B (2003) Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 217:207–221

    CAS  Google Scholar 

  • Sfez S, Van Den Hende S, Taelman SE, De Meester S, Dewulf J (2015) Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: from up-scaling to system integration. Bioresour Technol 190:321–331

    CAS  PubMed  Google Scholar 

  • Solomon CM, Collier JL, Berg GM, Glibert PM (2010) Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review. Aquat Microb Ecol 59:67–88

    Google Scholar 

  • Spotte S, Adams G (1983) Estimation of the allowable upper limit of ammonia in saline waters. Mar Ecol Prog Ser 10:207–210

    CAS  Google Scholar 

  • Srimongkol P, Tongchul N, Phunpruch S, Karnchanatat A (2019) Ability of marine cyanobacterium Synechococcus sp. VDW to remove ammonium from brackish aquaculture wastewater. Agric Water Manag 212:155–161

    Google Scholar 

  • Stolte W, McCollin T, Noordeloos AA, Riegman R (1994) Effect of nitrogen source on the size distribution within marine phytoplankton populations. J Exp Mar Biol Ecol 184:83–97

    CAS  Google Scholar 

  • Voltolina D, Nieves M, Navarro G, Oliva T, Peraza D (1998) The importance of acclimation for the evaluation of alternative media for microalgae growth. Aquac Eng 19:7–15

    Google Scholar 

  • Wang J, Zhou W, Chen H, Zhan J, He C, Wang Q (2018) Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front Microbiol 9:3250

    PubMed  Google Scholar 

  • Wasielesky W Jr, Atwood H, Stokes A, Browdy CL (2006) Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258:396–403

    Google Scholar 

  • Zhang X, Ma L, Tian X, Huang H, Yang Q (2015a) Biodiversity study of intracellular bacteria closely associated with paralytic shellfish poisoning dinoflagellates Alexandrium tamarense and A. minutum. Int J Env Resour 4:23–27

    Google Scholar 

  • Zhang X, Tian X, Ma L, Feng B, Liu Q, Yuan L, Fan C, Huang H, Yang Q (2015b) Biodiversity of the symbiotic bacteria associated with toxic marine dinoflagellate Alexandrium tamarense. J Biosci Med 3:23

    CAS  Google Scholar 

  • Zhuang Y, Zhang H, Hannick L, Lin S (2015) Metatranscriptome profiling reveals versatile N-nutrient utilization, CO2 limitation, oxidative stress, and active toxin production in an Alexandrium fundyense bloom. Harmful Algae 42:60–70

    CAS  Google Scholar 

Download references

Acknowledgments

The microalgae Amphidinium carterae Dn241 EHU was kindly donated by Dr. S. Seoane (Culture Collection of the Plant Biology and Ecology Department of the University of the Basque Country).

Funding

This research was funded by the Spanish Ministry of Economy and Competitiveness (CTQ2014-55888-C3-02) and the European Regional Development Fund Program. Professor Alfredo Olivera-Gálvez is supported by the Brazilian National Council for Scientific and Technological Development (CNPq) through the aid grant PDE 203104/2017-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. García-Camacho.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina-Miras, A., López-Rosales, L., Cerón-García, M.C. et al. Acclimation of the microalga Amphidinium carterae to different nitrogen sources: potential application in the treatment of marine aquaculture effluents. J Appl Phycol 32, 1075–1094 (2020). https://doi.org/10.1007/s10811-020-02049-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02049-9

Keywords

Navigation