Skip to main content
Log in

Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recycling of cellulases is an effective way to reduce the cost of enzymatic hydrolysis for the production of cellulosic ethanol. In this study, we examined the adsorption and desorption behaviors of cellulase at different pH values and temperatures. Furthermore, we developed a promising way to recover both free and bound cellulases by pH-triggered adsorption-desorption. The results show that acidic pH (e.g., pH 4.8) was found to favor adsorption, whereas alkaline pH (e.g., pH 10) and low temperature (4–37 °C) favored desorption. The adsorption of cellulases reached an equilibrium within 60 min at pH 4.8 and 25 °C, leading to approximately 50 % of the added cellulases bound to the substrate. By controlling the pH of eluent (citrate buffer, 25 °C), we were able to increase the desorption efficiency of bound cellulases from 15 % at pH 4.8 to 85 % at pH 10. To recover cellulases after enzymatic hydrolysis, we employed adsorption by fresh substrate and desorption at pH 10 to recover the free cellulases in supernatant and the bound cellulases in residue, respectively. The recycling performance (based on the glucose yield) of this simple strategy could reach near 80 %. Our results provided a simple, low-cost, and effective approach for cellulase recycling during the enzymatic hydrolysis of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng 97:287–296

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  • Chiaramonti D, Prussi M, Ferrero S, Oriani L, Ottonello P, Torre P, Cherchi F (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenergy 46:25–35

    Article  CAS  Google Scholar 

  • Divya Nair MP, Padmaja G, Moorthy SN (2011) Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass Bioenergy 35:1211–1218

    Article  CAS  Google Scholar 

  • Du R, Su R, Li X, Tantai X, Liu Z, Yang J, Qi W, He Z (2012) Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose 19:371–380

    Article  CAS  Google Scholar 

  • Eckard AD, Muthukumarappan K, Gibbons W (2013) Enzyme recycling in a simultaneous and separate saccharification and fermentation of corn stover: a comparison between the effect of polymeric micelles of surfactants and polypeptides. Bioresour Technol 132:202–209

    Article  CAS  PubMed  Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78

    Article  CAS  Google Scholar 

  • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Su R, Qi W, He Z (2010) Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol Prog 26:384–392

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Su R, Qi W, He Z (2011) Bioconversion of lignocellulose into bioethanol: process intensification and mechanism research. BioEnergy Res 4:225–245

    Article  Google Scholar 

  • Jang YS, Park JM, Choi S, Choi YJ, Seung do Y, Cho JH, Lee SY (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Wyman CE (2009a) Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol Bioeng 103:252–267

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Wyman CE (2009b) Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresour Technol 100:4193–4202

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Gao Y, Wang H, Li B, Liu C, Yu G, Mu X (2012) Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresour Technol 125:193–199

    Article  CAS  PubMed  Google Scholar 

  • Lin ZX, Zhang HM, Ji XJ, Chen JW, Huang H (2011) Hydrolytic enzyme of cellulose for complex formulation applied research. Appl Biochem Biotechnol 164:23–33

    Article  PubMed  Google Scholar 

  • Lu Y, Yang B, Gregg D, Saddler JN, Mansfield SD (2002) Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl Biochem Biotechnol 98–100:641–654

    Article  PubMed  Google Scholar 

  • Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment—a review. Biotechnol Bioeng 109:1430–1442

    Article  CAS  PubMed  Google Scholar 

  • Otter DE, Munro PA, Scott GK, Geddes R (1984) Elution of Trichoderma reesei cellulase from cellulose by pH adjustment with sodium hydroxide. Biotechnol Lett 6:369–374

    Article  CAS  Google Scholar 

  • Otter DE, Munro PA, Scott GK, Geddes R (1988) Desorption of Trichoderma reesei cellulase from cellulose by a range of desorbents. Biotechnol Bioeng 34:291–298

    Article  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  CAS  PubMed  Google Scholar 

  • Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:851–861

    Article  CAS  PubMed  Google Scholar 

  • Pribowo A, Arantes V, Saddler JN (2012) The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzym Microb Technol 50:195–203

    Article  CAS  Google Scholar 

  • Qi B, Chen X, Su Y, Wan Y (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 102:2881–2889

    Article  CAS  PubMed  Google Scholar 

  • Reese ET (1982) Elution of cellulase from cellulose. Process Biochem 17:2–6

    CAS  Google Scholar 

  • Rodrigues AC, Leitao AF, Moreira S, Felby C, Gama M (2012) Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresour Technol 110:526–533

    Article  CAS  PubMed  Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YH (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  CAS  PubMed  Google Scholar 

  • Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52:122–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tu M, Saddler JN (2010) Potential enzyme cost reduction with the addition of surfactant during the hydrolysis of pretreated softwood. Appl Biochem Biotechnol 161:274–287

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007a) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23:398–406

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007b) Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine. Biotechnol Prog 23:1130–1137

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Pan X, Saddler JN (2009a) Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 57:7771–7778

    Article  CAS  PubMed  Google Scholar 

  • Tu M, Zhang X, Paice M, MacFarlane P, Saddler JN (2009b) The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour Technol 100:6407–6415

    Article  CAS  PubMed  Google Scholar 

  • Wang QQ, Zhu JY, Hunt CG, Zhan HY (2012) Kinetics of adsorption, desorption, and re-adsorption of a commercial endoglucanase in lignocellulosic suspensions. Biotechnol Bioeng 109:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Weiss N, Borjesson J, Pedersen LS, Meyer AS (2013) Enzymatic lignocellulose hydrolysis: improved cellulase productivity by insoluble solids recycling. Biotechnol Biofuels 6:5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112

    Article  CAS  Google Scholar 

  • Yang J, Zhang X, Yong Q, Yu S (2011) Three-stage enzymatic hydrolysis of steam-exploded corn stover at high substrate concentration. Bioresour Technol 102:4905–4908

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Su R, Li Q, Qi W, He Z (2010) Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. BioEnergy Res 4:134–140

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Bioref 6:465–482

    Article  CAS  Google Scholar 

  • Zhu ZG, Sathitsuksanoh N, Zhang YHP (2009) Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 134:2267–2272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports received from the National Natural Science Foundation of China (Nos. 21276192 and 20976125) and Tianjin (No. 11JCYBJC04400), Open Funding Project of the State Key Laboratory of Chemical Engineering (No. SKL-ChE-11B01), and the Ministry of Education (Nos. NCET-11-0372, 20110032130004, and B06006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongxin Su or Renliang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Su, R., Huang, R. et al. Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Appl Microbiol Biotechnol 98, 5765–5774 (2014). https://doi.org/10.1007/s00253-014-5761-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5761-0

Keywords

Navigation