Skip to main content
Log in

Laboratory study of fungal bioreceptivity of different fractions of composite flooring tiles showing efflorescence

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungi can grow in extreme habitats, such as natural stone and mineral building materials, sometimes causing deterioration. Efflorescence—concentrated salt deposits—results from water movement through building material; it can damage masonry materials and other bricks. Fungal isolate KUR1, capable of growth on, and dissolution of stone chips composing terrazzo-type floor tiles, was isolated from such tiles showing fiber-like crystalline efflorescence. The isolate’s ribosomal DNA sequences were 100 % identical to those of Nigrospora sphaerica. The ability of KUR1 to colonize and degrade the different stone chips composing the tiles was studied in axenic culture experiments. When exposed to each of the different mineral chip types composed of dolomite, calcite, or calcite–apatite mineral in low-nutrition medium, the fungus showed selective nutrient consumption, and different growth and stone mineral dissolution rates. Micromorphological examination of the fungus-colonized chips by electron microscopy showed the production of a fungal biofilm with thin films around the hyphae on the surface of the examined chips and disintegration of the calcite–apatite fraction. More than 70 % dissolution of the introduced powdered (<1 mm particle size) mineral was obtained within 10 days of incubation for the soft calcite–apatite fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cantrell SA, Casillas-Martínez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  CAS  PubMed  Google Scholar 

  • Cappitelli F, Principi P, Pedrazzani R, Toniolo L, Sorlini C (2007) Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci Total Environ 385:172–181

    Article  CAS  PubMed  Google Scholar 

  • Daghino S, Martino E, Perotto S (2010) Fungal weathering and implications in the solubilization of metals from soil and from asbestos fiber. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1, Formatex. Badajoz, Spain, pp 329–338

    Google Scholar 

  • De La Torre MA, Gomez-Alarcon G, Vizcaino C, Garcia MT (1993) Biochemical mechanisms of stone alteration carried out by filamentous fungi living in monuments. Biogeochem 19:129–147

    Article  Google Scholar 

  • Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjevsk S (1995) Black fungi in marble and limestones—an aesthetical chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304

    Article  CAS  Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73:291–296

    Article  CAS  PubMed  Google Scholar 

  • Freimoser FM, Jakob CA, Aebi M, Tuor U (1999) The MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbiol 65:3727–3729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  CAS  PubMed  Google Scholar 

  • Gaylarde C, Silva MR, Warscheid T (2003) Microbial impact on building materials: an overview. Mater Struct 36:342–352

    Article  CAS  Google Scholar 

  • Gómez-Alarcón G, Muñoz ML, Flores M (1994) Excretion of organic acids by fungal strains isolated from decayed sandstone. Int Biodeterior Biodegrad 34:169–180

    Article  Google Scholar 

  • Gostinčar C, Muggia L, Grube M (2012) Polyextremotolerant black fungi: oligotrophism adaptive potential and a link to lichen symbioses. Front Microbiol 3:390

    PubMed Central  PubMed  Google Scholar 

  • Henrion B, Chevalier G, Martin F (1994) Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol Res 98:37–43

    Article  CAS  Google Scholar 

  • Hirsch P, Eckhardt FEW, Palmer RJ (1995) Fungi active in weathering of rock and stone monuments. Can J Bot 73:1384–1390

    Article  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  • Li W, Zhou PP, Jia LP, Yu LJ, Li XL, Zhu M (2009) Limestone dissolution induced by fungal mycelia acidic materials and carbonic anhydrase from fungi. Mycopathologia 167:37–46

    Article  CAS  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral–microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481

    Article  CAS  PubMed  Google Scholar 

  • Masaphy S, Zabari L, Pastrana J, Dultz S (2009) Role of fungal mycelium in the formation of carbonate concretions in growing media—an investigation by SEM and synchrotron-based X-ray tomographic microscopy. Geophys J Roy Astron Soc 26:442–450

    CAS  Google Scholar 

  • McGinnis MR (2007) Indoor mould development and dispersal. Med Mycol 45:1–9

    Article  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Moroni B, Pitzurra L (2008) Biodegradation of atmospheric pollutants by fungi: a crucial point in the corrosion of carbonate building stone. Int Biodeterior Biodegrad 62:391–396

    Article  CAS  Google Scholar 

  • Palmer RJ, Siebert J, Hirsch P (1991) Biomass and organic acids in sandstone of a weathering building: production by bacterial and fungal isolates. Microb Ecol 21:253–266

    Article  CAS  PubMed  Google Scholar 

  • Pinzari F, Tate J, Bicchieri M, Rhee YJ, Gadd GM (2012) Biodegradation of ivory (natural apatite): possible involvement of fungal activity in biodeterioration of the Lewis Chessmen. Environ Microbiol 15:1050–1062

    Article  PubMed  Google Scholar 

  • Principi P, Borin S, Sorlini C (2007) Synthetic consolidants attacked by melanin-producing fungi: case study of the biodeterioration of Milan (Italy) cathedral marble treated with acrylics. Appl Environ Microbiol 73:271–277

    Article  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sbaraglia G, Pitzurra L, Moroni B, Nocentini A, Vitali M, Poli G, Miliani C, Bistoni F (2003) Fungal colonization on stoneworks, interaction fungi-powdered stone samples. Ann Chim 93:889–896

    CAS  PubMed  Google Scholar 

  • Shirakawa MA, Tapper R, Cincotto MA, Beech I, Gambale W (1999) Fungal growth measurement by ESEM in four different mortars and proposal of a biodeterioration mechanism. Proc 21st Int Conf Cement Microscopy, 25–29 April, Las Vegas, NV, International Cement Microscopy Association (ICMA), Dallas, Texas, USA, pp 383–393

  • Shirakawa M, Gaylarde CC, Gaylarde PM, Vanderley J, Gambale W (2002) Fungal colonization and succession on newly painted buildings and the effect of biocide. FEMS Microbiol Ecol 39:165–173

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Wah C, Yu F, Kim JT (2010) Building pathology investigation of sick buildings—toxic moulds. Indoor Built Environ 19:40–47

    Article  Google Scholar 

  • Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55

    Article  Google Scholar 

  • Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art—tilting at windmills? App Microbiol Biotechnol 97:9637–9646

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256

    Article  CAS  Google Scholar 

  • Warscheid T, Braams J (2009) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  Google Scholar 

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • Welch SA, Taunton AE, Banfield JF (2002) Effect of microorganisms and microbial metabolites on apatite dissolution. Geophys J Roy Astron Soc 19:343–367

    CAS  Google Scholar 

  • Wiktor V, De Leo F, Urzì C, Guyonnet R, Grosseau P, Garcia-Diaz E (2009) Accelerated laboratory test to study fungal biodeterioration of cementitious matrix. Int Biodeterior Biodegrad 63:1061–1065

    Article  CAS  Google Scholar 

  • Winkler EM, Wilhelm EJ (1970) Salt burst by hydration pressures in architectural stone in urban atmosphere. Geol Soc Am Bull 81:567–572

    Article  CAS  Google Scholar 

  • Zehnder K, Arnold A (1989) Crystal growth in salt efflorescence. J Cryst Growth 97:513–521

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Amir Sandler at The Geological Survey of Israel, Jerusalem, for the XRD analysis of the stone and Jan Dijksterhuis from CBS for assisting in the fungal identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Segula Masaphy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masaphy, S., Lavi, I., Sultz, S. et al. Laboratory study of fungal bioreceptivity of different fractions of composite flooring tiles showing efflorescence. Appl Microbiol Biotechnol 98, 5251–5260 (2014). https://doi.org/10.1007/s00253-014-5628-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5628-4

Keywords

Navigation