Skip to main content

Advertisement

Log in

High-level expression, purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Porcine β-defensin 2 (pBD2), a recently discovered porcine defensin that is produced by the intestine, exerts antimicrobial activities and innate immune effects that are linked to intestinal diseases in pigs. Here, we report a codon-optimised protein corresponding to mature pBD2 cDNA that was expressed and purified in Pichia pastoris yeast. The highest amount of secreted protein (3,694.0 mg/L) was reached 144 h into a 150-h induction during high-density cultivation. Precipitation followed by gel exclusion chromatography yielded 383.7 mg/L purified recombinant pBD2 (rpBD2) with a purity of ~93.7 %. Two recombinant proteins of 5,458.5 and 5,258.4 Da were detected in the mass spectrum due to variation in the amino-terminus. The rpBD2 exhibited high antimicrobial activity against a broad range of pig pathogenic bacteria (minimal inhibitory concentration [MIC] 32–128 μg/mL); the highest activity was observed against Salmonella choleraesuis, Staphylococcus aureus and Streptococcus suis (MIC 32–64 μg/mL). However, rpBD2 also inhibited the growth of probiotics such as Lactobacillus plantarum, Bacillus subtilis and Saccharomyces cerevisiae, but at lower efficacies than the pathogens. Purified or unpurified rpBD2 also maintained high activity over a wide range of pH values (2.0–10.0), a high thermal stability at 100 °C for 40 min and significant resistance to papain, pepsin and trypsin. In addition, the activity of rpBD2 towards S. aureus was unaffected by 10 mM dithiothreitol (DTT) and 20 % dimethyl sulphoxide (DMSO). Our results suggest that pBD2 could be produced efficiently in large quantities in P. pastoris and be a substitute for traditional antibiotics for growth promotion in the porcine industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida MS, Cabral KS, de Medeiros LN, Valente AP, Almeida FC, Kurtenbach E (2001) cDNA cloning and heterologous expression of functional cysteine-rich antifungal protein Psd1 in the yeast Pichia pastoris: overcoming the inefficiency of the STE13 protease. Arch Biochem Biophys 395(2):199–207

    Article  CAS  PubMed  Google Scholar 

  • Cabral KM, Almeida MS, Valente AP, Almeida FC, Kurtenbach E (2003) Production of the active antifungal Pisum sativum defensin 1 (Psd 1) in Pichia pastoris: overcoming the inefficiency of the STE13 protease. Protein Expr Purif 31:115–122

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Wang D, Cong Y, Wang J, Zhu J, Yang J, Hu Z, Hu X, Tan Y, Hu F, Rao X (2011) Recombinant antimicrobial peptide hPAB-β expressed in Pichia pastoris, a potential agent active against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 8:281–291

    Article  Google Scholar 

  • Corrales-Garcia LL, Possani LD, Corzo G (2011) Expression systems of human β-defensins: vectors, purification and biological activities. Amino Acids 40:5–13

    Article  CAS  PubMed  Google Scholar 

  • Damaso MC, Almeida MS, Kurtenbach E, Martins OB, Pereira N Jr, Andrade CM, Albano RM (2003) Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Appl Environ Microbiol 69(10):6064–6072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta 1758(9):1499–1512

    Article  CAS  PubMed  Google Scholar 

  • Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J, Sonomoto K (2007) Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria. Appl Environ Microbiol 73(9):2871–2877. doi:10.1128/AEM.02286-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217

    Article  CAS  PubMed  Google Scholar 

  • Hsiao CP, Siebert KJ (1999) Modeling the inhibitory effects of organic acids on bacteria. Int J Food Microbiol 47:189–201

    Article  CAS  PubMed  Google Scholar 

  • Hsu KH, Pei C, Yeh JY, Shih CH, Chung YC, Hung LT, Ou BR (2009) Production of bioactive human α-defensin 5 in Pichia Pastoris. J Gen Appl Microbiol 55:395–401

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Yu B, He Q (2011) Expressing of porcine beta-defensin-2 mature peptide in the yeast. Wei Sheng Wu Xue Bao 51:704–709

    CAS  PubMed  Google Scholar 

  • Li L, Wang JX, Zhao XF, Kang CJ, Liu N, Xiang JH, Li FH, Sueda S, Kondo H (2005) High level expression, purification, and characterization of the shrimp antimicrobial peptide, Ch-penaeidin, in Pichia pastoris. Protein Expr Purif 39:144–151

    Article  CAS  PubMed  Google Scholar 

  • Li CL, Zhao YC, Song XY, Huang XX, Zhao WD (2013) Molecular cloning, expression and characterization of the porcine β defensin 2 in E. coli. Protein Pept Lett 20:715–723

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cai Y, Wang J, Zhou Q, Yang B, Lu Z, Jiao L, Zhang D, Sui S, Jiang Y, Ying W, Qian X (2007) Phosphoproteome profile of human liver Chang’s cell based on 2-DE with fluorescence staining and MALDI-TOF/TOF-MS. Electrophoresis 28(23):4348–4358. doi:10.1002/elps.200600696

    Article  CAS  PubMed  Google Scholar 

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, Hashsham SA, Tiedje JM, Stanton TB (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109(5):1691–1696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mao R, Teng D, Wang X, Xi D, Zhang Y, Hu X, Yang Y, Wang J (2012) Design, expression, and characterization of a novel targeted plectasin against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 97(9):3991–4002. doi:10.1007/s00253-012-4508-2

    Article  PubMed  Google Scholar 

  • Mccluskey AJ, Poon GM, Gariepy J (2007) A rapid and universal tandem-purification strategy for recombinant proteins. Protein Sci 16:2726–2732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Merchant AA, McConnell EL, Liu F, Ramaswamy C, Kulkami RP, Basit AW, Murdan S (2011) Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci 42:3–10

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Hidalgo M, Martinez-Bueno M, Fernandez-Escamilla AM, Valdivia E, Serrano L, Maqueda M (2008) Effect of replacing glutamic residues upon the biological activity and stability of the circular enterocin AS-48. J Antimicrob Chemother 61(6):1256–1265. doi:10.1093/jac/dkn126

    Article  CAS  PubMed  Google Scholar 

  • Sang YM, Patil AA, Zhang GL, Ross CR, Blecha F (2006) Bioinformatic and expression analysis of novel porcine beta-defensins. Mamm Genome 17:332–339

    Article  CAS  PubMed  Google Scholar 

  • Schäger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22

    Article  Google Scholar 

  • Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J, Buchner J, Schaller M, Stange EF, Wehkamp J (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423. doi:10.1038/nature09674

    Article  CAS  PubMed  Google Scholar 

  • Song W, Shi Y, Xiao MZ, Lu H, Qu TJ, Li P, Wu G, Tian Y (2009) In vitro bactericidal activity of recombinant human-defensin-3 against pathogenic bacterial strains in human tooth root canal. Int J Antimicrob Agents 33:237–243

    Article  CAS  PubMed  Google Scholar 

  • Su S, Liu P, Zhang H, Li Z, Song Z, Zhang L, Chen S (2011) Proteomic analysis of human age-related nuclear cataracts and normal lens nuclei. Invest Ophthalmol Vis Sci 52(7):4182–4191. doi:10.1167/iovs.10-7094

    Article  CAS  PubMed  Google Scholar 

  • Tian ZG, Dong TT, Yang YL, Teng D, Wang JH (2009) Expression of antimicrobial peptide LH multimers in Escherichia coli C43(DE3). Appl Microbiol Biotechnol 83:143–149

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen EJA, Hendriks HGCJM, Hogenkamp A, van Dijk A, Gaastra W, Tooten PCJ, Haagsman HP (2006) Differential regulation of porcine beta-defensins 1 and 2 upon Salmonella infection in the intestinal epithelial cell line IPI-2I. Vet Immunol Immunopathol 114:94–102

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen EJA, van Dijk A, Tersteeg MHG, Kalkhove SIC, van der Meulen J, Niewold TA, Haagsman HP (2007) Expression of beta-defensins pBD-1 and pBD-2 along the small intestinal tract of the pig: lack of upregulation in vivo upon Salmonella typhimurium infection. Mol Immunol 44:276–283

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen EJA, Rijnders M, Claassen EA, van Dijk A, Haagsman HP (2008) Porcine beta-defensin 2 displays broad antimicrobial activity against pathogenic intestinal bacteria. Mol Immunol 45:386–394

    Article  CAS  PubMed  Google Scholar 

  • Veldhuizen EJA, Koomen I, Ultee T, van Dijk A, Haagsman HP (2009) Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line. Vet Microbiol 136:69–75

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Wang S, Shen M, Chen F, Zou Z, Ran X, Cheng T, Su Y, Wang J (2009) High level expression and purification of bioactive human α-defensin 5 mature peptide in Pichia pastoris. Appl Microbiol Biotechnol 84:877–884

    Article  CAS  PubMed  Google Scholar 

  • Wehkamp J, Fellermann K, Herrlinger KR, Bevins CL, Stange EF (2005a) Mechanisms of disease: defensins in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol 2:406–415

    Article  CAS  PubMed  Google Scholar 

  • Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE, Shen B, Schaeffeler E, Schwab M, Linzmeier R, Feathers RW, Chu H, JrH L, Fellermann K, Ganz T, Stange EF, Bevins CL (2005b) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci U S A 102:18129–18134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadava A, Ockenhouse CF (2003) Effect of codon optimization on expression levels of a functionally folded malaria vaccine candidate in prokaryotic and eukaryotic expression systems. Infect Immun 71(9):4961–4969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang YL, Teng D, Zhang J, Tian ZG, Wang SR, Wang JH (2011) Characterization of recombinant plectasin: solubility, antimicrobial activity and factors that affect its activity. Process Biochem 46:1050–1055

    Article  CAS  Google Scholar 

  • Zhang GL, Wu H, Shi JS, Ganz T, Ross CR, Blecha F (1998) Molecular cloning and tissue expression of porcine beta-defensin-1. FEBS Lett 424:37–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Sun L, Yang L, Liu W (2010) Fusion expression and bioactivity comparison of porcine beta-defensin-2 and porcine interferon-gamma in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 26:1652–1659

    CAS  PubMed  Google Scholar 

  • Zhang J, Yang YL, Teng D, Tian ZG, Wang SR, Wang JH (2011) Expression of plectasin in Pichia pastoris and its characterization as a new antimicrobial peptide against Staphyloccocus and Streptococcus. Protein Expr Purif 78:189–196

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Teng D, Mao R, Wang X, Xi D, Hu X, Wang J (2014) High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Appl Microbiol Biotechnol 98(2):681–694. doi:10.1007/s00253-013-4881-2

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110(9):3435–3440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zilbauer M, Dorrell N, Boughan PK, Harris A, Wren BW, Klein NJ, Bajaj-Elliott M (2005) Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal human beta-defensins 2 and 3. Infect Immun 73(11):7281–7289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dong Wu, Fei Xie, Yakun Wu and Huixin Chen for technical assistance. Grants from the Beijing Nova program of the Beijing Municipal Science & Technology Commission (no. Z111105054511018), the Major State Basic Research Development Program of China (973 Program) (no. 2012CB723702) and the Postdoctoral Science Foundation of Beijing Haidian supported this work.

The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/TiLaFW

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anru Wang or Zhaoyue Wang.

Additional information

Anru Wang and Zhaoyue Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 308 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Z., Wang, A., Feng, Q. et al. High-level expression, purification and characterisation of porcine β-defensin 2 in Pichia pastoris and its potential as a cost-efficient growth promoter in porcine feed. Appl Microbiol Biotechnol 98, 5487–5497 (2014). https://doi.org/10.1007/s00253-014-5560-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5560-7

Keywords

Navigation