Skip to main content

Advertisement

Log in

TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) are one of the most ancient and widely studied innate immune receptors responsible for host defense against invading pathogens. Among the known TLRs, TLR7 and TLR8 sense and recognize single-stranded (ss) RNAs with a dynamic evolutionary history. While TLR8 was lost in birds and duplicated in turtles and crocodiles, TLR7 is duplicated in some birds, but in other tetrapods, there is only one copy. In mammals, with the exception of lagomorphs, TLR7 and TLR8 are highly conserved. Here, we aim to study the evolution of TLR7 and TLR8 in mammals, with a special focus in the order Lagomorpha. By searching public sequence databases, conducting evolutionary analysis, and evaluating gene expression, we were able to confirm that TLR8 is absent in hares but widely expressed in the European rabbit. In contrast, TLR7 is absent in the European rabbit and quite divergent in hares. Our results suggest that, in lagomorphs, more in particular in leporids, TLR7 and TLR8 genes have evolved faster than in any other mammalian group. The long history of interaction with viruses and their location in highly dynamic telomeric regions might explain the pattern observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrantes J, Lopes AM, Dalton KP, Melo P, Correia JJ, Ramada M, Alves PC, Parra F, Esteves PJ (2013) New variant of rabbit hemorrhagic disease virus, Portugal, 2012–2013. Emerg Infect Dis 19:1900–1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Abrantes J, van der Loo W, Le Pendu J, Esteves PJ (2012) Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Vet Res 43:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Agueda-Pinto A, Alves LQ, Neves F, McFadden G, Jacobs BL, Castro LFC, Rahman MM, Esteves PJ (2021) Convergent loss of the necroptosis pathway in disparate mammalian lineages shapes viruses countermeasures. Front Immunol 12:747737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson KV, Bokla L, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791–798

    Article  CAS  PubMed  Google Scholar 

  • Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evol Biol 11:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arpaia N, Barton GM (2011) Toll-like receptors: key players in antiviral immunity. Curr Opin Virol 1:447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Astakhova NM, Perelygin AA, Zharkikh AA, Lear TL, Coleman SJ, MacLeod JN, Brinton MA (2009) Characterization of equine and other vertebrate TLR3, TLR7, and TLR8 genes. Immunogenetics 61:529–539

    Article  CAS  PubMed  Google Scholar 

  • Aubry S, Kelly S, Kumpers BM, Smith-Unna RD, Hibberd JM (2014) Deep evolutionary comparison of gene expression identifies parallel recruitment of trans-factors in two independent origins of C4 photosynthesis. PLoS Genet 10:e1004365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baird DM (2018) Telomeres and genomic evolution. Philos Trans R Soc Lond B Biol Sci 373:20160437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Botos I, Segal DM, Davies DR (2011) The structural biology of Toll-like receptors. Structure 19:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne GJ, Fardilha M, Oxenham SK, Wu W, Helps NR, da Cruz ESOA, Cohen PT, da Cruz ESEF (2007) SARP, a new alternatively spliced protein phosphatase 1 and DNA interacting protein. Biochem J 402:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capucci L, Cavadini P, Lavazza A (2021) Rabbit hemorrhagic disease virus and European brown hare syndrome virus (Caliciviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of Virology, 4th edn. Academic Press

    Google Scholar 

  • Chapman JA, Flux JEC (2008) Introduction to the Lagomorpha. In: Alves PC, Ferrand N, Hackländer K (eds) Lagomorph Biology: Evolution, Ecology and Conservation. Springer

    Google Scholar 

  • Chen C, Zibiao H, Ming Z, Shiyi C, Ruixia L, Jie W, SongJia L (2014) Expression pattern of Toll-like receptors (TLRs) in different organs and effects of lipopolysaccharide on the expression of TLR 2 and 4 in reproductive organs of female rabbit. Dev Comp Immunol 46:341–348

    Article  CAS  PubMed  Google Scholar 

  • Crow KD, Wagner GP, Investigators ST-NY (2006) Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887–892

    Article  CAS  PubMed  Google Scholar 

  • de Matos AL, van der Loo W, Areal H, Lanning DK, Esteves PJ (2011) Study of Sylvilagus rabbit TRIM5alpha species-specific domain: how ancient endoviruses could have shaped the antiviral repertoire in Lagomorpha. BMC Evol Biol 11:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Article  CAS  PubMed  Google Scholar 

  • Dolby GA, Morales M, Webster TH, DeNardo DF, Wilson MA, Kusumi K (2020) Discovery of a new TLR gene and gene expansion event through improved desert tortoise genome assembly with chromosome-scale scaffolds. Genome Biol Evol 12:3917–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y, Christensen N, Gonzalez-Gallego J, Giacani L, Hu J, Kaplan G, Keppler OT, Knight KL, Kong XP, Lanning DK, Le Pendu J, de Matos AL, Liu J, Liu S, Lopes AM, Lu S, Lukehart S, Manabe YC, Neves F, McFadden G, Pan R, Peng X, de Sousa-Pereira P, Pinheiro A, Rahman M, Ruvoen-Clouet N, Subbian S, Tunon MJ, van der Loo W, Vaine M, Via LE, Wang S, Mage R (2018) The wide utility of rabbits as models of human diseases. Exp Mol Med 50:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MS, Alves PC, Callahan CM, Marques JP, Mills LS, Good JM, Melo-Ferreira J (2017) The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Mol Ecol 26:4173–4185

    Article  PubMed  Google Scholar 

  • Fletcher AJ, Hue S, Schaller T, Pillay D, Towers GJ (2010) Hare TRIM5alpha restricts divergent retroviruses and exhibits significant sequence variation from closely related lagomorpha TRIM5 genes. J Virol 84:12463–12468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge D, Wen Z, Xia L, Zhang Z, Erbajeva M, Huang C, Yang Q (2013) Evolutionary history of lagomorphs in response to global environmental change. PLoS One 8:e59668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL, Piontkivska H (2008) Functional diversification of the toll-like receptor gene family. Immunogenetics 60:249–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapelouzou A, Giaglis S, Peroulis M, Katsimpoulas M, Moustardas P, Aravanis CV, Kostakis A, Karayannakos PE, Cokkinos DV (2017) Overexpression of Toll-like receptors 2, 3, 4, and 8 is correlated to the vascular atherosclerotic process in the hyperlipidemic rabbit model: the effect of statin treatment. J Vasc Res 54:156–169

    Article  CAS  PubMed  Google Scholar 

  • Keckesova Z, Ylinen LM, Towers GJ, Gifford RJ, Katzourakis A (2009) Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology 384:7–11

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Maldonado E, Silva L, Almeida D, Johnson W, O’Brien S, Zhang G, Jarvis E, Gilbert T, Antunes A (2019) The vertebrate TLR supergene family evolved dynamically by gene gain/loss and positive selection revealing a host–pathogen arms race in birds. Divers Distrib 11:131

    CAS  Google Scholar 

  • Kruger A, Oldenburg M, Chebrolu C, Beisser D, Kolter J, Sigmund AM, Steinmann J, Schafer S, Hochrein H, Rahmann S, Wagner H, Henneke P, Hornung V, Buer J, Kirschning CJ (2015) Human TLR8 senses UR/URR motifs in bacterial and mitochondrial RNA. EMBO Rep 16:1656–1663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Lai CY, Liu YL, Yu GY, Maa MC, Leu TH, Xu C, Luo Y, Xiang R, Chuang TH (2014) TLR7/8 agonists activate a mild immune response in rabbits through TLR8 but not TLR7. Vaccine 32:5593–5599

    Article  CAS  PubMed  Google Scholar 

  • Lemos de Matos A, de Sousa-Pereira P, Lissovsky AA, van der Loo W, Melo-Ferreira J, Cui J, Esteves PJ (2015) Endogenization of mouse mammary tumor virus (MMTV)-like elements in genomes of pikas (Ochotona sp.). Virus Res 210:22–26

    Article  CAS  PubMed  Google Scholar 

  • Lester SN, Li K (2014) Toll-like receptors in antiviral innate immunity. J Mol Biol 426:1246–1264

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhang H, Zhao C, Zhang H (2020) Evolutionary history of the Toll-like receptor gene family across vertebrates. Genome Biol Evol 12:3615–3634

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xu C, Liu YL, Matsuo H, Hsieh RP, Lo JF, Tseng PH, Yuan CJ, Luo Y, Xiang R, Chuang TH (2012) Activation of rabbit TLR9 by different CpG-ODN optimized for mouse and human TLR9. Comp Immunol Microbiol Infect Dis 35:443–451

    Article  CAS  PubMed  Google Scholar 

  • Lok S, Paton TA, Wang Z, Kaur G, Walker S, Yuen RK, Sung WW, Whitney J, Buchanan JA, Trost B, Singh N, Apresto B, Chen N, Coole M, Dawson TJ, Ho K, Hu Z, Pullenayegum S, Samler K, Shipstone A, Tsoi F, Wang T, Pereira SL, Rostami P, Ryan CA, Tong AH, Ng K, Sundaravadanam Y, Simpson JT, Lim BK, Engstrom MD, Dutton CJ, Kerr KC, Franke M, Rapley W, Wintle RF, Scherer SW (2017) De novo genome and transcriptome assembly of the Canadian beaver (Castor canadensis). G3 (Bethesda) 7:755–773

  • Lopes AM, Marques S, Silva E, Magalhaes MJ, Pinheiro A, Alves PC, Le Pendu J, Esteves PJ, Thompson G, Abrantes J (2014) Detection of RHDV strains in the Iberian hare (Lepus granatensis): earliest evidence of rabbit lagovirus cross-species infection. Vet Res 45:94

    PubMed  PubMed Central  Google Scholar 

  • Matos B, Patricio D, Henriques MC, Freitas MJ, Vitorino R, Duarte IF, Howl J, Oliveira PA, Seixas F, Duarte JA, Ferreira R, Fardilha M (2021) Chronic exercise training attenuates prostate cancer-induced molecular remodelling in the testis. Cell Oncol (dordr) 44:311–327

    Article  CAS  Google Scholar 

  • Matthee CA, van Vuuren BJ, Bell D, Robinson TJ (2004) A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. Syst Biol 53:433–447

    Article  PubMed  Google Scholar 

  • Melo-Ferreira J, Lemos de Matos A, Areal H, Lissovsky AA, Carneiro M, Esteves PJ (2015) The phylogeny of pikas (Ochotona) inferred from a multilocus coalescent approach. Mol Phylogenet Evol 84:240–244

    Article  PubMed  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves F, Agueda-Pinto A, Pinheiro A, Abrantes J, Esteves PJ (2019) Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals. Immunogenetics 71:437–443

    Article  CAS  PubMed  Google Scholar 

  • Nie L, Cai SY, Shao JZ, Chen J (2018) Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front Immunol 9:1523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Philbin VJ, Iqbal M, Boyd Y, Goodchild MJ, Beal RK, Bumstead N, Young J, Smith AL (2005) Identification and characterization of a functional, alternatively spliced Toll-like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology 114:507–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro A, Agueda-Pinto A, Melo-Ferreira J, Neves F, Abrantes J, Esteves PJ (2019) Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups. BMC Evol Biol 19:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ (2016) An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 68:83–107

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 67:901–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartorius R, Trovato M, Manco R, D’Apice L, De Berardinis P (2021) Exploiting viral sensing mediated by Toll-like receptors to design innovative vaccines. NPJ Vaccines 6:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Signorino G, Mohammadi N, Patane F, Buscetta M, Venza M, Venza I, Mancuso G, Midiri A, Alexopoulou L, Teti G, Biondo C, Beninati C (2014) Role of Toll-like receptor 13 in innate immune recognition of group B streptococci. Infect Immun 82:5013–5022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su S, Xing G, Wang J, Li Z, Gu J, Yan L, Lei J, Ji S, Hu B, Gray GC, Yan Y, Zhou J (2016) Characterization of H7N2 avian influenza virus in wild birds and pikas in Qinghai-Tibet Plateau Area. Sci Rep 6:30974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Loo W, Abrantes J, Esteves PJ (2009) Sharing of endogenous lentiviral gene fragments among leporid lineages separated for more than 12 million years. J Virol 83:2386–2388

    Article  PubMed  CAS  Google Scholar 

  • Velova H, Gutowska-Ding MW, Burt DW, Vinkler M (2018) Toll-like receptor evolution in birds: gene duplication, pseudogenization, and diversifying selection. Mol Biol Evol 35:2170–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voogdt CGP, van Putten JPM (2016) Chapter 13 - the evolution of the Toll-like receptor system. In: Malagoli D (ed) The Evolution of the Immune System. Academic Press

    Google Scholar 

  • Yan Y, Gu JY, Yuan ZC, Chen XY, Li ZK, Lei J, Hu BL, Yan LP, Xing G, Liao M, Zhou JY (2017) Genetic characterization of H9N2 avian influenza virus in plateau pikas in the Qinghai Lake region of China. Arch Virol 162:1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Yap MW, Stoye JP (2013) Apparent effect of rabbit endogenous lentivirus type K acquisition on retrovirus restriction by lagomorph Trim5alphas. Philos Trans R Soc Lond B Biol Sci 368:20120498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M, Yamauchi Y, Tanji H, Isobe T, Uchiyama S, Miyake K, Shimizu T (2016) Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45:737–748

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Sun W, Wang J, Guo J, Yin W, Wu N, Li L, Yan Y, Liao M, Huang Y, Luo K, Jiang X, Chen H (2009) Characterization of the H5N1 highly pathogenic avian influenza virus derived from wild pikas in China. J Virol 83:8957–8964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Lin Z, Nakhleh L (2013) Evolution after whole-genome duplication: a network perspective. G3 (Bethesda) 3:2049–2057

Download references

Funding

This work was funded by the Foundation for Science and Technology (FCT), which supported the researcher grants of Joana Abrantes, José Melo-Ferreira and Pedro José Esteves (CEECIND/00078/2017, CEECIND/00372/2018 and 2020.01495.CEECIND/CP1601/CT0005, respectively), and the project UIDB/50027/2020 (Base). This work was supported by the Portuguese Foundation for Science and Technology, under the grant UIDB/04033/2020 (CITAB) and UIDB/CVT/00772/2020 (CECAV), by COMPETE for funding Institute of Biomedicine (iBiMED) under the grant UIDB/04501/2020 and POCI-01-0145-FEDER-007628, and by the Hospital Center of Trás-os-Montes and Alto Douro. The authors thank the Portuguese Foundation for Science and Technology for the Ph.D. grant SFRH/BD/146867/2019.

Author information

Authors and Affiliations

Authors

Contributions

JA and PJE designed the study and, in collaboration with JM-F and MF, also designed the experiments. FN, PP-P, and BC performed experiments. FN, JPM, HA, PP-P, BC, JM-F, MF JA, and PJE analyzed the data. FN wrote the manuscript with contributions from all the authors.

Corresponding author

Correspondence to Fabiana Neves.

Ethics declarations

Ethics approval

This study was approved and licensed by the Portuguese competent authority for animal welfare, the Directorate-General for Food and Veterinary (permit number: 010532/2018). All experimental procedures were performed following DR 1.ª série- N.º151-7 of August 2013 and the EU Directive 2010/63/EU for animal experiments. The study was also approved by the Ethics and Internal Review Board of the Hospital Infante D. Pedro E.P.E. (Aveiro, Portugal) (Process number: 36/AO; Approved on 14 April 2015) and was conducted under the Declaration of Helsinki (as revised in Declaration of Helsinki 2000 – WMA – The World Medical Association, 2000). All healthy donors were provided with information regarding the study and written consent was obtained before study enrollment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Joana Abrantes and Pedro J. Esteves share the senior authorship.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neves, F., Marques, J.P., Areal, H. et al. TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages. Immunogenetics 74, 475–485 (2022). https://doi.org/10.1007/s00251-022-01262-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-022-01262-9

Keywords

Navigation