Andreatta M, Schafer-Nielsen C, Lund O, Buus S, Nielsen M (2011) NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data. PLoS ONE 6:e26781
CAS
PubMed Central
PubMed
Article
Google Scholar
Bodd M, Kim CY, Lundin KE, Sollid LM (2012) T-cell response to gluten in patients with HLA-DQ2.2 reveals requirement of peptide-MHC stability in celiac disease. Gastroenterol 142:552–561
CAS
Article
Google Scholar
Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178:27–47
CAS
PubMed
Article
Google Scholar
Dorum S, Bodd M, Fallang LE, Bergseng E, Christophersen A, Johannesen MK, Qiao SW, Stamnaes J, de Souza GA, Sollid LM (2014) HLA-DQ molecules as affinity matrix for identification of gluten T cell epitopes. J Immunol 193:4497–506
CAS
PubMed
Article
Google Scholar
Efron B (2007) Size, power and false discovery rates. Ann Stat 35:1351–1377
Article
Google Scholar
Falk K, Rotzschke O, Stevanovic S, Jung G, Rammensee HG (1994) Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules. Immunogenetics 39:230–242
CAS
PubMed
Article
Google Scholar
Fallang LE, Bergseng E, Hotta K, Berg-Larsen A, Kim CY, Sollid LM (2009) Differences in the risk of celiac disease associated with HLA-DQ2.5 or HLA-DQ2.2 are related to sustained gluten antigen presentation. Nat Immunol 10:1096–1101
CAS
PubMed
Article
Google Scholar
Fallang LE, Roh S, Holm A, Bergseng E, Yoon T, Fleckenstein B, Bandyopadhyay A, Mellins ED, Sollid LM (2008) Complexes of two cohorts of CLIP peptides and HLA-DQ2 of the autoimmune DR3-DQ2 haplotype are poor substrates for HLA-DM. J Immunol 181:5451–5461
CAS
PubMed Central
PubMed
Article
Google Scholar
Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299
CAS
PubMed
Article
Google Scholar
Godkin A, Friede T, Davenport M, Stevanovic S, Willis A, Jewell D, Hill A, Rammensee HG (1997) Use of eluted peptide sequence data to identify the binding characteristics of peptides to the insulin-dependent diabetes susceptibility allele HLA-DQ8 (DQ 3.2). Int Immunol 9:905–911
CAS
PubMed
Article
Google Scholar
Goeman JJ, van de Geer SA, de Floor K, van Houwelingen HC (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20:93–99
CAS
PubMed
Article
Google Scholar
Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H, Peixoto A, Flynn MP, Senman B, Junt T, Wong HC, Chakraborty AK, von Andrian UH (2008) T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 9:282–291
CAS
PubMed Central
PubMed
Article
Google Scholar
Johansen BH, Jensen T, Thorpe CJ, Vartdal F, Thorsby E, Sollid LM (1996a) Both a and b chain polymorphisms determine the specificity of the disease-associated HLA-DQ2 molecules, with beta chain residues being most influential. Immunogenetics 45:142–150
CAS
PubMed
Article
Google Scholar
Johansen BH, Vartdal F, Eriksen JA, Thorsby E, Sollid LM (1996b) Identification of a putative motif for binding of peptides to HLA-DQ2. Int Immunol 8:177–182
CAS
PubMed
Article
Google Scholar
Karell K, Louka AS, Moodie SJ, Ascher H, Clot F, Greco L, Ciclitira PJ, Sollid LM, Partanen J (2003) HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European genetics cluster on celiac disease. Hum Immunol 64:469–477
CAS
PubMed
Article
Google Scholar
Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M (2013) NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 65:711–724
CAS
PubMed
Article
Google Scholar
Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11:3487–3497
CAS
PubMed
Article
Google Scholar
Khalil-Daher I, Boisgerault F, Feugeas JP, Tieng V, Toubert A, Charron D (1998) Naturally processed peptides from HLA-DQ7 (a1*0501-b1*0301): influence of both a and b chain polymorphism in the HLA-DQ peptide binding specificity. Eur J Immunol 28:3840–3849
CAS
PubMed
Article
Google Scholar
Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A 101:4175–4179
CAS
PubMed Central
PubMed
Article
Google Scholar
Langaas M, Lindqvist BH, Ferkingstad E (2005) Estimating the proportion of true null hypotheses, with application to DNA microarray data. JRStatistSocB 67:555–572
Google Scholar
Lettre G, Rioux JD (2008) Autoimmune diseases: insights from genome-wide association studies. Hum Mol Genet 17:R116–R121
CAS
PubMed Central
PubMed
Article
Google Scholar
Lippolis JD, White FM, Marto JA, Luckey CJ, Bullock TN, Shabanowitz J, Hunt DF, Engelhard VH (2002) Analysis of MHC class II antigen processing by quantitation of peptides that constitute nested sets. J Immunol 169:5089–5097
PubMed
Article
Google Scholar
Lundin KE, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, Thorsby E, Sollid LM (1993) Gliadin-specific, HLA-DQ(a1*0501, b1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 178:187–196
CAS
PubMed
Article
Google Scholar
Malcherek G, Gnau V, Jung G, Rammensee HG, Melms A (1995) Supermotifs enable natural invariant chain-derived peptides to interact with many major histocompatibility complex-class II molecules. J Exp Med 181:527–536
CAS
PubMed
Article
Google Scholar
Margaritte-Jeannin P, Babron MC, Bourgey M, Louka AS, Clot F, Percopo S, Coto I, Hugot JP, Ascher H, Sollid LM, Greco L, Clerget-Darpoux F (2004) HLA-DQ relative risks for coeliac disease in European populations: a study of the European genetics cluster on coeliac disease. Tissue Antigens 63:562–567
CAS
PubMed
Article
Google Scholar
Qiao SW, Bergseng E, Molberg Ø, Jung G, Fleckenstein B, Sollid LM (2005) Refining the rules of gliadin T cell epitope binding to the disease associated DQ2 molecule in celiac disease; importance of proline spacing and glutamine deamidation. J Immunol 175:254–261
CAS
PubMed
Article
Google Scholar
Sollid LM, Lie BA (2005) Celiac disease genetics: current concepts and practical applications. Clin Gastroenterol Hepatol 3:843–851
CAS
PubMed
Article
Google Scholar
Sollid LM, Qiao SW, Anderson RP, Gianfrani C, Koning F (2012) Nomenclature and listing of celiac disease relevant gluten T-cell epitopes restricted by HLA-DQ molecules. Immunogenetics 64:455–460
PubMed Central
PubMed
Article
Google Scholar
Spits H, Borst J, Giphart M, Coligan J, Terhorst C, De Vries JE (1984) HLA-DC antigens can serve as recognition elements for human cytotoxic T lymphocytes. Eur J Immunol 14:299–304
CAS
PubMed
Article
Google Scholar
Stepniak D, Wiesner M, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, Van Veelen PA, Koning F (2008) Large-scale characterization of natural ligands explains the unique gluten-binding properties of HLA-DQ2. J Immunol 180:3268–3278
CAS
PubMed
Article
Google Scholar
Thomsen MC, Nielsen M (2012) Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res 40:W281–W287
CAS
PubMed Central
PubMed
Article
Google Scholar
Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121
CAS
PubMed Central
PubMed
Article
Google Scholar
Vader W, Stepniak D, Kooy Y, Mearin L, Thompson A, van Rood JJ, Spaenij L, Koning F (2003) The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A 100:12390–12395
CAS
PubMed Central
PubMed
Article
Google Scholar
van de Wal Y, Kooy YM, Drijfhout JW, Amons R, Koning F (1996) Peptide binding characteristics of the coeliac disease-associated DQ(a1*0501, b1*0201) molecule. Immunogenetics 44:246–253
PubMed
Article
Google Scholar
van de Wal Y, Kooy YM, Drijfhout JW, Amons R, Papadopoulos GK, Koning F (1997) Unique peptide binding characteristics of the disease-associated DQ(a1*0501, b1*0201) vs the non-disease-associated DQ (a1*0201, b1*0202) molecule. Immunogenetics 46:484–492
PubMed
Article
Google Scholar
Vartdal F, Johansen BH, Friede T, Thorpe CJ, Stevanovic S, Eriksen JE, Sletten K, Thorsby E, Rammensee HG, Sollid LM (1996) The peptide binding motif of the disease associated HLA-DQ (a1*0501, b1*0201) molecule. Eur J Immunol 26:2764–2772
CAS
PubMed
Article
Google Scholar
Viken HD, Paulsen G, Sollid LM, Lundin KEA, Tjonnfjord GE, Thorsby E, Gaudernack G (1995) Characterization of an HLA-DQ2-specific monoclonal antibody—influence of amino acid substitutions in DQb1*0202. Hum Immunol 42:319–327
CAS
PubMed
Article
Google Scholar
Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4, e1000048
PubMed Central
PubMed
Article
Google Scholar
Wiesner M, Stepniak D, de Ru AH, Moustakis AK, Drijfhout JW, Papadopoulos GK, Van Veelen PA, Koning F (2008) Dominance of an alternative CLIP sequence in the celiac disease associated HLA-DQ2 molecule. Immunogenetics 60:551–555
CAS
PubMed Central
PubMed
Article
Google Scholar