Skip to main content
Log in

Peptide binding characteristics of the coeliac disease-associated DQ(α1*0501, β1*0201) molecule

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Genetic susceptibility to coeliac disease (CD) is strongly associated with the expression of theHLA-DQ2 (α1*0501, β1*0201) allele. There is evidence that this DQ2 molecule plays a role in the pathogenesis of CD as a restriction element for gliadin-specific T cells in the gut. However, it remains largely unclear which fragments of gliadin can actually be presented by the disease-associated DQ dimer. With a view to identifying possible CD-inducing antigens, we studied the peptide binding properties of DQ2. For this purpose, peptides bound to HLA-DQ2 were isolated and characterized. Dominant peptides were found to be derived from two self-proteins: in addition to several sizevariants of the invariant chain (li)-derived CLIP peptide, a relatively large amount of an major histocompatibility complex (MHC) class I-derived peptide was found. Analogues of this naturally processed epitope (MHClα46–63) were tested in a cell-free peptide binding competition assay to investigate the requirements for binding to DQ2. First, a core sequence of 10 amino acids within the MHClα46–63 peptide was identified. By subsequent single amino acid substitution analysis of this core sequence, five putative anchor residues were identified at relative positions P1, P4, P6, P7, and P9. Replacement by the large, positively charged Lys at these positions resulted in a dramatic loss of binding. However, several other non-conservative substitutions had little or no discernable effect on the binding capacity of the peptides.

Substitutions at P1 and P4 were most critical, suggesting a more prominent role as anchor residues. Structural features of the DQ2 molecule that may relate to the binding motif and to gluten sensitivity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bijlmakers, M. J., Benaroch, P., and Ploegh, H. L. Mapping functional regions in the lumenal domain of the class II-associated invariant chain.J Exp Med 180: 623–629, 1994

    Article  PubMed  CAS  Google Scholar 

  • Chicz, R. M., Urban, R. G., Lane, W. S., Gorga, J. C., Stern, L. J., Vignali, D. A. A., and Strominger, J. L. Predominantly naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size.Nature 358: 764–771, 1992

    Article  PubMed  CAS  Google Scholar 

  • Chicz, R. M., Urban, R. G., Gorga, J. C., Vignali, D. A., Lane, W. S., and Strominger, J. L. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles.J Exp Med 178: 27–47, 1993

    Article  PubMed  CAS  Google Scholar 

  • Chicz, R. M., Lane, W. S., Robinson, R. A., Trucco, M., Strominger, J. L., and Gorga, J. C. Self-peptides bound to the type I diabetes associated class II MHC molecules HLA-DQ1 and HLA-DQ8.Int Immunol 6: 1639–1649, 1994

    Article  PubMed  CAS  Google Scholar 

  • Falk, K., Rotzschke, O., Stevanović, S., Jung, G., and Rammensee, H. G. Pool sequencing of natural HLA-DR, DQ, and DP ligands reveals detailed peptide motifs, constraints of processing, and general rules.Immunogenetics 39: 230–242, 1994

    Article  PubMed  CAS  Google Scholar 

  • Geluk, A., Van Meijgaarden, K. E., Drijfhout, J. W., and Ottenhoff, T. H. M. CLIP binds to HLA class II using methionine-based, allele-dependent motifs as well as allele-independent supermotifs.Mol Immunol 32: 975–981, 1995

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, P., Amaya, M., Mellins, E., and Wiley, D. C. The structure of an intermediate in class II MHC maturation: CLIP bound to HLA-DR3.Nature 378: 457–462, 1995

    Article  PubMed  CAS  Google Scholar 

  • Gorga, J. C., Horejsi, V., Johnson, D. R., Raghupathy, R., and Strominger, J. L. Purification and characterization of class II histocompatibility antigens from a homozygous B cell line.J Biol Chem 262: 16087–16094, 1987

    PubMed  CAS  Google Scholar 

  • Greenwood, F. C., Hunter, W. H., and Glover, J. S. The preparation of 13II-labelled human growth hormone of high specific radioactivity.Biochem J 89: 114–120, 1963

    PubMed  CAS  Google Scholar 

  • Gregersen, P. K., Silver, J., and Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis.Arthritis. Rheum 30: 1205–1213, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hammer, J., Takacs, B., and Sinigaglia, F. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries.J Exp Med 176: 1007–1013, 1992

    Article  PubMed  CAS  Google Scholar 

  • Hillarby, M. C., Clarkson, R., Grennan, D. M., Bate, A. S., Ollier, W., Sanders, P. A., Chattophadhyay, C., Davis, M., O'Sullivan, M. M., and Williams, B. Immunogenetic heterogeneity in rheumatoid disease as illustrated by different MHC associations (DQ, Dw and C4) in articular and extra-articular subsets.Br J Rheumatol 30: 5–9, 1991

    Article  PubMed  CAS  Google Scholar 

  • Johansen, B. H., Buus, S., Vartdal, F., Viken, H., Eriksen, J. A., Thorsby, E., and Sollid, L. M. Binding of peptides to HLA-DQ molecules: peptide binding properties of the disease-associated HLA-DQ (alpha 1* 0501, beta 1*0201) molecule.Int Immunol 6: 453–461, 1994

    Article  PubMed  CAS  Google Scholar 

  • Khalil, I., d'Auriol, L., Gobet, M., Morin, L., Lepage, V., Deschamps, I., Park, MS, Degos, L., Galibert, F., and Hors, J. A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus.J Clin Invest 85: 1315–1319, 1990

    Article  PubMed  CAS  Google Scholar 

  • Kropshofer, M., Max, H., Halder, T., Kalbus, M., Muller, C. A., and Kalbacher, H. Self-peptides from four HLA-DR alleles share hydrophobic anchor residues near the NH2-terminal including proline as a stop signal for trimming.J Immunol 151: 4732–4742, 1993

    PubMed  CAS  Google Scholar 

  • Lanchbury, J. S., Sakkas, L. I., Marsh, S. G., Bodmer, J. G., Welsh, K. I., and Panayi, G. S. HLA-DQ beta 3.1 allele is a determinant of susceptibility to DR4-associated rheumatoid arthritis.Hum Immunol 26: 59–71, 1989

    Article  PubMed  CAS  Google Scholar 

  • Lundin, K. E., Scott, H., Hansen, T., Paulsen, G., Halstensen, T. S., Fausa, O., Thorsby, E., and Sollid, L. M. Gliadin-specific, HLA-DQ(alpha 1*0501, beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients.J Exp Med 178: 187–196, 1993

    Article  PubMed  CAS  Google Scholar 

  • Malcherek, G., Gnau, V., Jung, G., Rammensee, H. G., and Melms, A. Supermotifs enable natural invariant chain-derived peptides to interact with many major histocompatibility complex-class II molecules.J Exp Med 181: 527–536, 1995

    Article  PubMed  CAS  Google Scholar 

  • O'Sullivan, D., Sidney, J., del Guercio, M. F., Colon, S. M., and Sette, A. Truncation analysis of several DR binding epitopes.J Immunol 146: 1240–1246, 1991

    PubMed  Google Scholar 

  • Olerup, O., Hillert, J., Fredrikson, S., Olsson, T., Kam-Hansen, S., Moller, E., Carlsson, B., and Walling, J. Primarily chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities.Proc Natl Acad Sci USA 86: 7113–7117, 1989

    Article  PubMed  CAS  Google Scholar 

  • Rammensee, H. G., Friede T., and Stevanović S. MHC ligands and peptide motifs: first listing.Immunogenetics 41: 178–228, 1995

    Article  PubMed  CAS  Google Scholar 

  • Riberdy, J. M., Newcomb, J. R., Surman, M. J., Barbosa, J. A., and Cresswell, P. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides.Nature 360: 474–477, 1992

    Article  PubMed  CAS  Google Scholar 

  • Roche, P. A. and Cresswell P. Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding.Nature 345: 615–618, 1990

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli, P. and Germain, R. N. The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy.J Exp Med 180: 1107–1113, 1994

    Article  PubMed  CAS  Google Scholar 

  • Routsias, J. and Papadopoulos, G. K. Polymorphic structural features of modelled HLA-DQ molecules segregate according to susceptibility or resistance to IDDM.Diabetologia 38: 1251–1261, 1995

    PubMed  CAS  Google Scholar 

  • Sansom, D. M., Bidwell, J. L., Maddison, P. J., Campion, G., Klouda, P. T., and Bradley, B. A. HLA DQ alpha and DQ beta restriction fragment length polymorphisms associated with Felty's syndrome and DR4-positive rheumatoid arthritis.Hum Immunol 19: 269–278, 1987

    Article  PubMed  CAS  Google Scholar 

  • Sette, A., Ceman, S., Kubo, R. T., Sakaguchi, K., Appella, E., Hunt, D. F., Davis, T. A., Michel, H., Shabanowitz, J., Rubersdorf, R., Grey, H. M., and DeMars R. Invariant chain peptides in most HLA-DR molecules of an antigen-processing mutant.Science 258: 1801–1804, 1992

    Article  PubMed  CAS  Google Scholar 

  • Sidney, J., Oseroff, C., Southwood, S., Wall, M., Ishioka, G., Koning, F., and Sette, A. DRBA*0301 molecules recognize a structural motif distinct from the one recognized by most DR beta 1 alleles.J Immunol 149: 2634–2640, 1992

    PubMed  CAS  Google Scholar 

  • Sidney, J., Oseroff, C., del Guercio, M. F., Southwood, S., Krieger, J. I., Ishioka, G. Y., Sakaguchi, K., Appella, E., and Sette, A. Definition of a DQ3.1-specific binding motif.J Immunol 152: 4516–4525, 1994

    PubMed  CAS  Google Scholar 

  • Sollid, L. M., Markussen, G., and Ek, J. Evidence for a primary association of coeliac disease to a particular HLA-DQ alpha/beta heterodimer.J Exp Med 169: 345–350, 1989

    Article  PubMed  CAS  Google Scholar 

  • Spits, H., Borst, J., Giphart, M. J., Coligan, J., Terhorst, C., and De Vries, J. HLA-DQ antigens can serve as recognition elements for human cytotoxic T lymphocytes.Eur J Immunol 14: 299–304, 1984

    Article  PubMed  CAS  Google Scholar 

  • Spurkland, A., Ronningen, K. S., Vandvik, B., Thorsby, E., and Vartdal, F. HLA-DQA1 and HLA-DQB1 genes may jointly determine susceptibility to develop multiple sclerosis.Hum Immunol 30: 69–75, 1991

    Article  PubMed  CAS  Google Scholar 

  • Stern, L. J., Brown, J. H., Jardetzky, T. S., Gorga, J. C., Urban, R. G., Strominger, J. L., and Wiley, D. C. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide.Nature 368: 215–221, 1994

    Article  PubMed  CAS  Google Scholar 

  • Tighe, M. R., Hall, M. A., and Barbado, M. HLA class II allelles associated with celiac disease susceptibility in a southern European population.Tissue Antigens 40: 90–97, 1992

    Article  PubMed  CAS  Google Scholar 

  • Tighe, M. R. and Ciclitira, P. J. The gluten-host interaction.CI Gastroenterol 9: 215–230, 1995

    Google Scholar 

  • Todd, J. A., Bell, J. I., and McDevitt, H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus.Nature 329: 599–604, 1987

    Article  PubMed  CAS  Google Scholar 

  • Todd, J. A. Genetic control of autoimmunity in type 1 diabetes.Immunol Today 11: 122–129, 1990

    Article  PubMed  CAS  Google Scholar 

  • Vartdal, F., Sollid, L. M., Vandvik, B., Markussen, G., and Thorsby, E. Patients with multiple sclerosis carry DQB1 genes which encode shared polymorphic amino acid sequences.Hum Immunol 25: 103–110, 1989

    Article  PubMed  CAS  Google Scholar 

  • Verreck, F. A. W., Van de Poel, A., Termijtelen, A., Amons, R., Drijfhout, J. W., and Koning, F. Identification of an HLA-DQ2 peptide binding motif and HLA-DPw3-bound self-peptide by pool sequencing.Eur J Immunol 24: 375–379, 1994

    Article  PubMed  CAS  Google Scholar 

  • Verreck, F. A. W., Vermeulen, C., Van de Poel, A., Jorritsma, P., Amons, R., Coligan, J. E., Drijfhout, J. W., and Koning, F. The generation of SDS-stable HLA DR dimers is independent of efficient peptide binding.Int Immunol, in press

  • Wucherpfennig, K. W. and Strominger, J. L. Selective binding of self peptides to disease-associated major histocompatibility complex (MHC) molecules: a mechanism for MHC-linked susceptibility to human autoimmune diseases.J Exp Med 181: 1597–1601, 1995

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Wal, Y., Kooy, Y.M.C., Drijfhout, J.W. et al. Peptide binding characteristics of the coeliac disease-associated DQ(α1*0501, β1*0201) molecule. Immunogenetics 44, 246–253 (1996). https://doi.org/10.1007/BF02602553

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02602553

Keywords

Navigation