, Volume 66, Issue 12, pp 693–704 | Cite as

Variation in positively selected major histocompatibility complex class I loci in rufous-collared sparrows (Zonotrichia capensis)

  • Matthew R. Jones
  • Zachary A. Cheviron
  • Matthew D. Carling
Original Paper


The major histocompatibility complex (MHC) is a highly variable family of genes involved in parasite recognition and the initiation of adaptive immune system responses. Variation in MHC loci is maintained primarily through parasite-mediated selection or disassortative mate choice. To characterize MHC diversity of rufous-collared sparrows (Zonotrichia capensis), an abundant South American passerine, we examined allelic and nucleotide variation in MHC class I exon 3 using pyrosequencing. Exon 3 comprises a substantial portion of the peptide-binding region (PBR) of class I MHC and thus plays an important role in intracellular pathogen defense. We identified 98 putatively functional alleles that produce 56 unique protein sequences across at least 6 paralogous loci. Allelic diversity per individual and exon-wide nucleotide diversity were relatively low; however, we found specific amino acid positions with high nucleotide diversity and signatures of positive selection (elevated d N /d S ) that may correspond to the PBR. Based on the variation in physicochemical properties of amino acids at these “positively selected sites,” we identified ten functional MHC supertypes. Spatial variation in nucleotide diversity and the number of MHC alleles, proteins, and supertypes per individual suggests that environmental heterogeneity may affect patterns of MHC diversity. Furthermore, populations with high MHC diversity have higher prevalence of avian malaria, consistent with parasite-mediated selection on MHC. Together, these results provide a framework for subsequent investigations of selective agents acting on MHC in Z. capensis.


Genetic variation Elevational gradient Major histocompatibility complex Natural selection Parasites Zonotrichia capensis 



This work was funded by the American Museum of Natural History Frank M. Chapman Fund, Sigma Xi Grant-In-Aid-Of-Research, the American Ornithologists’ Union, and the University of Wyoming. Voucher specimens and pectoral muscle tissue samples of all of the specimens included in this study are accessioned at the Louisiana State University Museum of Natural Science (Baton Rouge), the Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (Lima, Peru), and the Centro de Ornitologia y Biodiversidad (Lima, Peru). The Genome Sequencing and Analysis Core Resource at Duke University sequenced MHC amplicon libraries. We thank Amy Ellison for advice with designing MHC sequencing protocol. We thank Shawn M. Billerman, C. Alex Buerkle, Michael E. Dillon, James M. Maley, Melanie M. Murphy, and three anonymous reviewers for providing helpful comments on the manuscript.

Supplementary material

251_2014_800_MOESM1_ESM.pdf (69 kb)
ESM 1 (PDF 68 kb)
251_2014_800_MOESM2_ESM.pdf (80 kb)
ESM 2 (PDF 79 kb)
251_2014_800_MOESM3_ESM.pdf (88 kb)
ESM 3 (PDF 87 kb)
251_2014_800_MOESM4_ESM.pdf (86 kb)
ESM 4 (PDF 85 kb)


  1. Alcaide M, Edwards SV, Negro JJ (2007) Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey. J Mol Evol 65:541–554PubMedCrossRefGoogle Scholar
  2. Alcaide M, Edwards SV, Cadahía L, Negro JJ (2009) MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. Conserv Genet 10:1349–1355CrossRefGoogle Scholar
  3. Alcaide M, Lui M, Edward SV (2013) Major histocompatibility complex class I evolution in songbirds: universal primers, rapid evolution and base compositional shifts in exon 3. Peer J 1:e86PubMedCentralPubMedCrossRefGoogle Scholar
  4. Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236PubMedCentralPubMedGoogle Scholar
  5. Babik W, Pabijan M, Arntzen JW, Cogălniceanu D, Durka W, Radwan J (2009a) Long-term survival of a urodele amphibian despite depleted major histocompatibility complex variation. Mol Ecol 18:769–781PubMedCrossRefGoogle Scholar
  6. Babik W, Taberlet P, Ejsmond MJ, Radwan J (2009b) Next generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Mol Ecol Res 9:713–719CrossRefGoogle Scholar
  7. Babik W, Kawałko A, Wójcik JM, Radwan J (2012) Low major histocompatibility complex class I (MHC I) variation in the European Bison (Bison bonasus). J Hered 103:349–359PubMedCrossRefGoogle Scholar
  8. Balakrishnan CN, Ekblom R, Völker M, Westerdahl H, Godinez R, Kotkiewicz H, Burt DW, Graves T, Griffin DK, Warren WC, Edwards SV (2010) Gene duplication and fragmentation in the zebra finch major histocompatibility complex. BMC Biol 8:29PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377PubMedCrossRefGoogle Scholar
  10. Bjorkman PJ, Saper MA, Samraoui BSB, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518PubMedCrossRefGoogle Scholar
  11. Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of Mhc class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865PubMedCrossRefGoogle Scholar
  12. Bonneaud C, Pérez-Tris J, Federici P, Chastel O, Sorci G (2006) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution 60:383–389PubMedCrossRefGoogle Scholar
  13. Cheviron ZA, Brumfield RT (2009) Migration-selection balance and local adaptation of mitochondrial haplotypes in rufous-collared sparrow (Zonotrichia capensis) along an elevational gradient. Evolution 63:1593–1605PubMedCrossRefGoogle Scholar
  14. Cole RK (1968) Studies on the genetic resistance to Marek’s disease. Avian Dis 12:9–28PubMedCrossRefGoogle Scholar
  15. Delany ME, Robinson CM, Goto RM, Miller MM (2009) Architecture and organization of chicken microchromosome 16: order of the NOR, MHC-Y, and MHC-B subregions. J Hered 100:507–514PubMedCrossRefGoogle Scholar
  16. Ditchkoff SS, Lochmiller RL, Masters RE, Hoofer SR, Van Den Bussche RA (2001) Major histocompatibility-complex-associated variation in secondary sexual traits of white tailed deer (Odocoileus virginianus): evidence for good-genes advertisement. Evolution 55:616–625PubMedCrossRefGoogle Scholar
  17. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095PubMedCrossRefGoogle Scholar
  18. Dunn PO, Bollmer JL, Freeman-Gallant CR, Whittingham LA (2013) MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution 67:679–687PubMedCrossRefGoogle Scholar
  19. Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311PubMedCrossRefGoogle Scholar
  20. Ekblom R, Stapley J, Ball AD, Birkhead T, Burke T, Slate J (2011) Genetic mapping of the major histocompatibility complex in the zebra finch (Taeniopygia guttata). Immunogenetics 63:523–530PubMedCrossRefGoogle Scholar
  21. Ellison A, Allainguillaume J, Girdwood S, Pachebat J, Peat KM, Wright P, Consuegra S (2012) Maintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate. Proc R Soc B 279:5004–5013PubMedCentralPubMedCrossRefGoogle Scholar
  22. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501CrossRefGoogle Scholar
  23. Galan M, Guivier E, Caraux G, Charbonnel N, Cosson J-F (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics 11:296PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin JF (2011) Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics 12:245PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hackett SJ et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768PubMedCrossRefGoogle Scholar
  26. Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasnini J, Nagy ZA, Sinigaglia FL (1995) Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med 5:1847–1855CrossRefGoogle Scholar
  27. Hansen MM, Skaala O, Jensen LF, Bekkevold D, Mensberg KL (2007) Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway. Mol Ecol 16:1413–1425PubMedCrossRefGoogle Scholar
  28. Hedrick PW (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56(1902):1908Google Scholar
  29. Hill AVS (1998) The immunogenetics of human infectious diseases. Ann Rev Immunol 16:593–617CrossRefGoogle Scholar
  30. Horton R, Wilming L, Rand V, Lovering RC, Bruford AE, Khodiyar VK, Lush MJ, Povey S, Talbot CC Jr, Wright MW, Wain HM, Trowsdale J, Ziegler A, Beck S (2004) Gene map of the extended human MHC. Nat Rev Genet 5:889–899PubMedCrossRefGoogle Scholar
  31. Hughes AL, Nei M (1988) Patterns of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170PubMedCrossRefGoogle Scholar
  32. Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6:559–579PubMedGoogle Scholar
  33. Hughes CR, Miles S, Walbroehl JM (2008) Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class II B gene. Immunogenetics 60:219–231PubMedCrossRefGoogle Scholar
  34. Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405PubMedCrossRefGoogle Scholar
  35. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94PubMedCentralPubMedCrossRefGoogle Scholar
  36. Jones MR, Cheviron ZA, Carling MD (2013) Spatial patterns of avian malaria prevalence in Zonotrichia capensis on the western slope of the Peruvian Andes. J Parasitol 99:903–905PubMedCrossRefGoogle Scholar
  37. Kaufman J, Milne S, Göbel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 40:923–925CrossRefGoogle Scholar
  38. Klein J, Satta Y, O’hUigin C, Takahata N (1993) The molecular descent of the major histocompatibility complex. Ann Rev Immunol 11:269–295CrossRefGoogle Scholar
  39. Kloch A, Babik W, Bajer A, Siński A, Radwan J (2010) Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus. Mol Ecol 19:255–265PubMedCrossRefGoogle Scholar
  40. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4:e1000304PubMedCentralPubMedCrossRefGoogle Scholar
  41. Lamaze FC, Pavey SA, Normandeau E, Roy G, Garant D, Bernatchez L (2014) Natural and selective processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis). Mol Ecol 23:1730–1748PubMedCrossRefGoogle Scholar
  42. LePage KT, Miller MM, Briles WE, Taylor RL Jr (2000) Rfp-Y genotype affects the fate of Rous sarcomas in B2 B5 chickens. Immunogenetics 51:751–754PubMedCrossRefGoogle Scholar
  43. Loiseau C, Zoorob R, Robert A, Chastel O, Julliard R, Sorci G (2010) Plasmodium relictum infection and MHC diversity in the House Sparrow. Proc R Soc B 278:1264–1272PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lougheed SC, Campagna L, Dávila JA, Tubaro PL, Lijtmaer DA, Handford P (2013) Continental phylogeography of an ecologically and morphologically diverse songbird, Zonotrichia capensis. BMC Evol Biol 13:58PubMedCentralPubMedCrossRefGoogle Scholar
  45. Matsumura M, Fremont DH, Peterson PA, Wilson IA (1992) Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257:927–934PubMedCrossRefGoogle Scholar
  46. Miller HC, Bowker-Wright G, Kharkrang M, Ramstad K (2011) Characterisation of class II B MHC genes from a ratite bird, the little spotted kiwi (Apteryx owenii). Immunogenetics 63:223–233PubMedCrossRefGoogle Scholar
  47. Møller AP, Erritzøe J (1998) Host immune defence and migration in birds. Evol Ecol 12:945–953CrossRefGoogle Scholar
  48. Nadachowska-Brzyska K, Zieliński P, Radwan J, Babik W (2012) Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol Ecol 21:887–906PubMedCrossRefGoogle Scholar
  49. Ophir R, Graur D (1997) Patterns and rates of indel evolution in processed pseudogenes from humans and murids. Gene 205:191–202PubMedCrossRefGoogle Scholar
  50. Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420PubMedCrossRefGoogle Scholar
  51. Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple strain infections. Proc Natl Acad Sci 99:11260–11264PubMedCentralPubMedCrossRefGoogle Scholar
  52. Promerová M, Babik W, Bryja J, Albrecht T, Stuglik M, Radwan J (2012) Evaluation of two approaches to genotyping major histocompatibility complex class I in passerine CE SSCP and 454 pyrosequencing. Mol Ecol Res 12:285–292CrossRefGoogle Scholar
  53. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  54. Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302PubMedCrossRefGoogle Scholar
  55. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  56. Schulenberg TS, Stotz DF, Lane DF, O’Neill JP, Parker TA III (2007) Birds of Peru. Princeton University Press, Princeton, p 656Google Scholar
  57. Schut E, Rivero-de Aguilar J, Merino S, Magrath MJL, Komdeur J, Westerdahl H (2011) Characterization of MHC-I in the blue tit (Cyanistes caeruleus) reveals low levels of genetic diversity and trans-population evolution across European populations. Immunogenetics 63:531–542PubMedCentralPubMedCrossRefGoogle Scholar
  58. Sepil I, Moghadam HK, Huchard E, Sheldon BC (2012) Characterization and 45 pyrosequencing of major histocompatibility complex class I genes in the great tit reveal complexity in a passerine system. BMC Evol Biol 12:68PubMedCentralPubMedCrossRefGoogle Scholar
  59. Shetty S, Griffin DK, Graves JA (1999) Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosom Res 7:289–295CrossRefGoogle Scholar
  60. Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763PubMedCrossRefGoogle Scholar
  61. Shiina T, Briles WE, Goto RM, Hosomichi K, Yanagiya K, Shimizu S, Inoko H, Miller MM (2007) Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. J Immunol 178:7162–7172PubMedCrossRefGoogle Scholar
  62. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms, and misunderstandings. Proc R Soc B 277:979–988PubMedCentralPubMedCrossRefGoogle Scholar
  63. Spurgin LG, van Oosterhout C, Illera JC, Bridgett S, Gharbi K, Emerson BC, Richardson DS (2011) Gene conversion rapidly generates major histocompatibility complex diversity in recently founded bird populations. Mol Ecol 20:5213–5225PubMedCrossRefGoogle Scholar
  64. Stager M, Cerasale DJ, Dor R, Winkler DW, Cheviron ZA (2014) Signatures of natural selection in the mitochondrial genomes of Tachycineta swallows and their implications for latitudinal patterns of the ‘pace of life’. Gene. In press.Google Scholar
  65. Stiebens VA, Merino SE, Chain FJJ, Eizaguirre C (2013) Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing. BMC Evol Biol 13:95PubMedCentralPubMedCrossRefGoogle Scholar
  66. Strandh M, Lannefors M, Bonadonna F, Westerdahl H (2011) Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes). Immunogenetics 63:653–666PubMedCrossRefGoogle Scholar
  67. Strandh M, Westerdahl H, Pontarp M, Canbäck B, Dubois MP, Miquel C, Taberlet P, Bonadonna F (2012) Major histocompatibility complex class II compatibility, but not class I, predicts mate choice in a bird with highly developed olfaction. Proc R Soc B 279:4457–4463PubMedCentralPubMedCrossRefGoogle Scholar
  68. Stuglik MT, Radwan J, Babik W (2011) jMHC: software assistant for multilocus genotyping of gene families using next-generation amplicon sequencing. Mol Ecol Res 11:739–742CrossRefGoogle Scholar
  69. Sutton JT, Nakagawa S, Robertson BC, Jamieson IG (2011) Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol 20:4408–4420PubMedCrossRefGoogle Scholar
  70. Sutton JT, Robertson BC, Grueber CE, Stanton JL, Jamieson IG (2013) Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity. Immunogenetics 65:619–633PubMedCrossRefGoogle Scholar
  71. Takahashi K, Rooney AP, Nei M (2000) Origins and divergence times of mammalian class II MHC gene clusters. J Hered 91:198–204PubMedCrossRefGoogle Scholar
  72. Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978PubMedCentralPubMedGoogle Scholar
  73. Tao N, Bruno WJ, Abfalterer W, Moret BME, Leitner, T, Kuiken C (2005) FINDMODEL: a tool to select the best-fit model of nucleotide substitution.
  74. von-Schantz T, Wittzell H, Göransson G, Grahn M, Persson K (1996) MHC genotype and male ornamentation: genetic evidence for the Hamilton-Zuk hypothesis. Proc R Soc B 263:265–271PubMedCrossRefGoogle Scholar
  75. Wakenell PS, Miller MM, Goto RM, Gauderman WJ, Briles WE (1996) Association between the Rfp-Y haplotype and the incidence of Marek’s disease in chickens. Immunogenetics 44:242–245PubMedCrossRefGoogle Scholar
  76. Wallny H-J, Avila D, Hunt LG, Powell TJ, Riegert P, Salomonsen J, Skjødt K, Vainio O, Vilbois F, Wiles MV, Kaufman J (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC determined response to Rous sarcoma virus in chickens. Proc Natl Acad Sci 103:1434–1439PubMedCentralPubMedCrossRefGoogle Scholar
  77. Wang Y, Qiu M, Yang J, Zhao X, Wang Y, Zhu Q, Liu Y (2014) Sequence variations of the MHC class I gene exon 2 and exon 3 between infected and uninfected chicken challenged with Marek’s disease virus. Infect Genet Evol 21:103–109PubMedCrossRefGoogle Scholar
  78. Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232PubMedCrossRefGoogle Scholar
  79. Westerdahl H, Wittzell H, von-Schantz T (1999) Polymorphism and transcription of Mhc class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170PubMedCrossRefGoogle Scholar
  80. Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von-Schantz T, Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. Proc R Soc B 272:151–1518CrossRefGoogle Scholar
  81. Westerdahl H (2007) Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol 148:S469–S477CrossRefGoogle Scholar
  82. Westerdahl H, Asghar M, Hasselquist D, Bensch S (2012) Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex. Proc R Soc B 279:577–584PubMedCentralPubMedCrossRefGoogle Scholar
  83. Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425PubMedCentralPubMedCrossRefGoogle Scholar
  84. Wiseman RW, Karl JA, Bimber BN, O’Leary CE, Lank SM, Tuscher JJ, Detmer AM, Bouffard P, Levenkova N, Turcotte CL, Szekeres E Jr, Wright C, Harkins T, O’Connor DH (2009) Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med 15:1322–1327PubMedCentralPubMedCrossRefGoogle Scholar
  85. Wucherpfennig KW, Yu B, Bhol K, Monos DS, Argyris E, Karr RW, Ahmed AR, Strominger JL (1995) Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci 92:11935–11939PubMedCentralPubMedCrossRefGoogle Scholar
  86. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedCrossRefGoogle Scholar
  87. Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogenous selective pressures among site classes. Mol Biol Evol 19:49–57PubMedCrossRefGoogle Scholar
  88. Zagalska-Neubauer M, Babik W, Stuglik M, Gustafsson L, Cichoń M, Radwan J (2010) 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol Biol 10:395PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matthew R. Jones
    • 1
    • 3
  • Zachary A. Cheviron
    • 2
  • Matthew D. Carling
    • 1
  1. 1.Department of Zoology and Physiology, Berry Biodiversity Conservation CenterUniversity of WyomingLaramieUSA
  2. 2.Department of Animal Biology, School of Integrative BiologyUniversity of Illinois Urbana-ChampaignUrbanaUSA
  3. 3.Division of Biological SciencesUniversity of MontanaMissoulaUSA

Personalised recommendations