Skip to main content
Log in

Sequence variability at three MHC loci of finless porpoises (Neophocaena phocaenoides)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Major histocompatibility complex (MHC) class II DQB and DRA genes and class I gene of finless porpoises (Neophocaena phocaenoides) were investigated by single-strand conformation polymorphism and sequence analysis. The DRA, DQB, and MHC-I loci each contained 5, 14, and 34 unique sequences, respectively, and considerable sequence variation was found at the MHC-I and DQB loci. Gene duplication was manifested as three to five distinct sequences at each of the DQB and MHC-I loci from some individuals, and these sequences at each of the two loci separately clustered into four groups (cluster A, B, C, and D) based on the phylogenetic trees. Phylogenetic reconstruction revealed a trans-species pattern of evolution. Relatively high rates of non-synonymous (d N) vs synonymous (d S) substitution in the peptide-binding region (PBR) suggested balancing selection for maintaining polymorphisms at the MHC-I and DQB loci. In contrast, one single locus with little sequence variation was detected in the DRA gene, and no non-synonymous substitutions in the PBR indicated no balancing selection on this gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott KM, Wickings EJ, Knapp LA (2006) High levels of diversity characterize mandrill (Mandrillus sphinx) Mhc-DRB sequences. Immunogenetics 58:628–640

    Article  PubMed  CAS  Google Scholar 

  • Aguilar AG, Roemer S, Debenham M, Binns D, Garcelon, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494

    Article  PubMed  CAS  Google Scholar 

  • Amills M, Jiménez N, Jordana J, Riccardi A, Fernández-Arias A, Guiral J, Bouzat JL, Folch J, Sànchez A (2004) Low diversity in the major histocompatibility complex class II DRB1 gene of Spanish ibex, Capra pyrenaica. Heredity 93:266–272

    Article  PubMed  CAS  Google Scholar 

  • Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224

    PubMed  CAS  Google Scholar 

  • Babik W, Durka W, Radwan J (2005) Sequence diversity of the MHC DRB gene in the Eurasian beaver (Castor fiber). Mol Ecol 14:4249–4257

    Article  PubMed  CAS  Google Scholar 

  • Baker CS, Vant MD, Dalebout ML, Lento GM, O’Brien SJ, Yuhki N (2006) Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder: Mysticeti). Immunogenetics 58:283–296

    Article  PubMed  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    PubMed  CAS  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512

    Article  PubMed  CAS  Google Scholar 

  • Bowen L, Aldridge BM, Gulland F, Van Bonn W, DeLong R, Melin S, Lowenstine LJ, Sott JF, Johnson ML (2004) Class II multiformity generated by variable MHC-DRB region configurations in the California sea lion (Zalophus californianus). Immunogenetics 56:12–27

    Article  PubMed  CAS  Google Scholar 

  • Bowen L, Aldridge BM, Delong R, Melin S, Godinez D, Zavala A, Gulland F, Lowenestine L, Stott JT, Johnson ML (2006) MHC gene configuration variation in geographically disparate populations of California sea lions (Zalophus californianus). Mol Ecol 15:529–533

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) 3-Dimensional structure of the human class-II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  PubMed  CAS  Google Scholar 

  • Cassens I, Vicario S, Waddell VG, Balchowsky H, Van Belle D, Ding W, Fan C, Lal Mohan RS, Simones-Lopes PC, Bastida R, Meyer A, Stanhope MJ, Milinkovitch MC (2000) Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proc Natl Acad Sci USA 97:11343–11347

    Article  PubMed  CAS  Google Scholar 

  • Chu ZT, Carswell-Crumpton C, Cole BC, Jones PP (1994) The minimal polymorphism of class II E alpha chains is not due to the functional neutrality of mutations. Immunogenetics 40:9–20

    Article  PubMed  CAS  Google Scholar 

  • De Muizon C (1988) Les relations phylogenetigues des Delphinida (Cetacea, Mammalia). Annales de Paleontol 74:159–227

    Google Scholar 

  • De Swart RL, Ross PS, Vos JG, Osterhaus ADME (1996) Impaired immunity in harbour seals (Phoca vitulina) exposed to bioaccumulated environmental contaminants: review of a long-term feeding study. Environ Health Perspect 104:823–828

    Article  PubMed  Google Scholar 

  • Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, Brock R, Driessen C, Rammensee HG, Stevanovic S (2005) Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc Natl Acad Sci USA 102:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Ellis SA, Ballingall KT (1999) Cattle MHC: evolution in action? Immunol Rev 167:159–168

    Article  PubMed  CAS  Google Scholar 

  • Ellis SA, Staines KA, Holmes EC, Smith KB, Stear MJ, McKeever DJ, MacHugh ND, Morrison WI (1999) Variation in the number of expressed MHC genes in different cattle class I haplotypes. Immunogenetics 50:319–328

    Article  PubMed  CAS  Google Scholar 

  • Flores-Ramirez S, Urban-Ramirez J, Miller RD (2000) Major histocompatibility complex class I loci from the gray whale (Eschrichtius robustus). J Heredity 91:279–282

    Article  CAS  Google Scholar 

  • Gao AL, Zhou KY (1995) Geographical variation of external measurements and three subspecies of Neophocaena phocaenoides in Chinese waters. Acta Theriol Sinica 15:81–92

    Google Scholar 

  • Gutierrez-Espeleta GA, Hedrick PW, Kalinowski ST, Garrigan D, Boyce WM (2001) Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation? Heredity 86:439–450

    Article  PubMed  CAS  Google Scholar 

  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Nishida S, Yoshida H, Goto M, Pastene LA, Koike H (2003) Sequence variation of the DQB allele in the cetacean MHC. Mamm Study 28:89–96

    Google Scholar 

  • Hedrick PW (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56:1902–1908

    PubMed  Google Scholar 

  • Hedrick PW, Parker KM, Miller EL, Miller PS (1999) Major histocompatibility complex variation in the endangered Przewalski’s horse. Genetics 152:1701–1710

    PubMed  CAS  Google Scholar 

  • Hedrick PW, Kim TJ, Parker KM (2001a) Parasite resistance and genetic variation in the endangered Gila topminnow. Anim Conserv 4:103–109

    Article  Google Scholar 

  • Hedrick PW, Parker KM, Lee RN (2001b) Using microsatellite and MHC variation to identify species, ESUs, and MUs in the endangered Sonoran topminnow. Mol Ecol 10:1399–1412

    Article  PubMed  CAS  Google Scholar 

  • Hill AVS, Allsopp CEM, Kwiatkowski D, Anstey NM, Twumasi P, Rowe PA, Bennett S, Brewster D, McMichael AJ, Greenwood BM (1991) Common West African HLA antigens are associated with protection from severe malaria. Nature 352:595–600

    Article  PubMed  CAS  Google Scholar 

  • Hoelzel AR, Stephens JC, O’Brien SJ (1999) Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. Mol Biol Evol 16:611–618

    PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435

    Article  PubMed  CAS  Google Scholar 

  • Janitz M, Reiners-Schramm L, Lauster R (1998) Expression of the H2-Ea gene is modulated by a polymorphic transcriptional enhancer. Immunogenetics 48:266–272

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) The natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J (1987) Origin of major histocompatibility complex polymorphism-the transspecies hypothesis. Hum Immunol 19:155–162

    Article  PubMed  CAS  Google Scholar 

  • Klein J, Takahata N (1990) The major histocompatibility complex and the quest for origins. Immunol Rev 113:5–25

    Article  PubMed  CAS  Google Scholar 

  • Kriener K, O’hUigin C, Tichy H (2000) Convergent evolution of major histocompatibility complex molecules in humans and New World monkeys. Immunogenetics 51:169–178

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Langefors A, Lohm J, Grahn M, Andersen O, von Schantz T (2001) Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc R Soc Lond B 268:479–485

    Article  CAS  Google Scholar 

  • McClelland EE, Penn DJ, Potts WK (2003) Major histocompatibility complex heterozygote superiority during coinfection. Infect Immun 71:2079–2086

    Article  PubMed  CAS  Google Scholar 

  • Murray BW, White BN (1998) Sequence variation at the major histocompatibility complex DRB loci in beluga (Delphinapterus leucas) and narwhal (Monodon monoceros). Immunogenetics 48:242–252

    Article  PubMed  CAS  Google Scholar 

  • Murray BW, Malik S, White BN (1995) Sequence variation at the major histocompatibility complex locus DQB in beluga whales (Delphinapterus leucas). Mol Biol Evol 12:582–593

    PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Ohta T (1998) On the pattern of polymorphisms at major histocompatibility complex loci. J Mol Evol 46:633–638

    Article  PubMed  CAS  Google Scholar 

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc Natl Acad Sci USA 95:3714–3719

    Article  PubMed  CAS  Google Scholar 

  • Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygocity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 99:11260–11264

    Article  PubMed  CAS  Google Scholar 

  • Pimtanothai N, Hurley CK, Leke R, Klitz W, Johnson AH (2001) HLA-DR and -DQ polymorphism in Cameroon. Tissue Antigens 58:1–8

    Article  PubMed  CAS  Google Scholar 

  • Potts WK, Wakeland EK (1993) Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet 9:408–412

    Article  PubMed  CAS  Google Scholar 

  • Reeves RR, Wang JY, Leatherwood S (1997) The finless porpoise, Neophocaena phocaenoides (G. Cuvier, 1829): a summary of current knowledge and recommendations for conservation action. Asian Mar Biol 14:111–143

    Google Scholar 

  • Rice DW (1998) Marine mammals of the world: systematics and distribution. Marine Mammal Society, Special Publishion No. 4. Society for Marine Mammalogy, Lawrence, KS, USA

    Google Scholar 

  • Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus species: the outbred great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529

    Article  Google Scholar 

  • Sambrook J, Russell DW (eds) (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

  • Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450

    PubMed  CAS  Google Scholar 

  • Sena L, Schneider MPC, Brenig B, Honeycutt RL, Womack JE, Skow LC (2003) Polymorphisms in MHC-DRA and -DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles. Anim Genet 34:1–10

    Article  PubMed  CAS  Google Scholar 

  • Shirakihara M, Shirakihara K, Takemura A (1994) Distribution and seasonal density of the finless porpoise, Neophocaena phocaenoides, in the coastal waters of western Kyushu. Japan Fisheries Science 60:82–85

    Google Scholar 

  • Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368:215–221

    Article  PubMed  CAS  Google Scholar 

  • Takada T, Kikkawa Y, Yonekawa H, Amano Y (1998) Analysis of goat MHC class II DRA and DRB genes: identification of the expressed gene and new DRB alleles. Immunogenetics 48:408–412

    Article  PubMed  CAS  Google Scholar 

  • Trowsdale J, Gorves V, Arnason A (1989) Limited MHC polymorphism in whales. Immunogenetics 29:19–24

    Article  PubMed  CAS  Google Scholar 

  • Weber DS, Stewart BS, Schienman J, Lehman N (2004) Major histocompatibility complex variation at three class II loci in the northern elephant seal. Mol Ecol 13:711–718

    Article  PubMed  CAS  Google Scholar 

  • Xia JH, Zheng JH, Wang D (2005) Individual identification of the Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis inhabiting the Tian-e-Zhou Natural Reserve based on microsatellite fingerprints. Acta Zool Sinica 51:142–148

    CAS  Google Scholar 

  • Yang G, Zhou KY, Ren WH, Ji GQ, Liu S, Bastida R, Rivero L (2002a) Molecular systematics of river dolphins inferred from complete mitochondrial cytochrome b gene sequences. Mar Mamm Sci 18:20–29

    Article  CAS  Google Scholar 

  • Yang G, Ren WH, Zhou KY, Liu S, Ji GQ, Yan J, Wang L (2002b) Population genetic structure of finless porpoises Neophocaena phocaenoides in Chinese waters, inferred from mitochondrial control region sequences. Mar Mamm Sci 18:336–347

    Article  Google Scholar 

  • Yang G, Liu S, Ren WH, Zhou KY, Wei FW (2003) Mitochondrial control region variability of baiji and the Yangtze finless porpoises, two sympatric small cetaceans in the Yangtze river. Acta Theriol 48:469–483

    Google Scholar 

  • Yang G, Yan J, Zhou KY, Wei FW (2005) Sequence variation and gene duplication at MHC DQB loci of baiji (Lipotes vexillifer), a Chinese river dolphin. J Heredity 96:310–317

    Article  CAS  Google Scholar 

  • Yang G, Guo L, Bruford M, Wei FW, Zhou KY (2007) Mitochondrial phylogeography and population history of finless porpoises in Sino-Japanese waters. Biol J Linn Soc (in press)

  • Yoshida H, Shirakihara K, Shirakihara M, Takemura A (1995) Geographic variation in the skull morphology of the finless porpoise Neophocaena phocaenoides in Japanese waters. Fish Sci (Tokyo) 61:555–558

    CAS  Google Scholar 

  • Yoshida H, Yoshioka M, Shirakihara M, Chow S (2001) Population structure of finless porpoises (Neophocaena phocaenoides) in coastal waters of Japan based on mitochondrial DNA sequences. J Mammal 82:123–130

    Article  Google Scholar 

  • Zheng JS, Xia JH, He SP, Wang D (2005) Population genetic structure of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis): implications for management and conservation. Biochem Genet 43:307–320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported through the National Natural Science Foundation Commission of China Grants, No.30270212, No.30470253, and No.30670294 and “Qinglan Project” of Jiangsu Province awarded to Dr. Guang Yang. The authors thank Anli Gao, Xin-Rong Xu, Hua Chen, and Qing Chang for collecting samples during the years, and members of the Institute of Genetic Resources, Nanjing Normal University, for their contributions to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Sun, P., Zhou, K. et al. Sequence variability at three MHC loci of finless porpoises (Neophocaena phocaenoides). Immunogenetics 59, 581–592 (2007). https://doi.org/10.1007/s00251-007-0223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-007-0223-9

Keywords

Navigation