Skip to main content
Log in

The minimal polymorphism of class II Eα chains is not due to the functional neutrality of mutations

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Given the extensive allelic amino acid sequence polymorphism present in the first domain of Aα, Aβ, and Eβ chains and its profound effects on class II function, the minimal polymorphism in the mouse Eα chain (and in its human homologue DRα) is paradox. Two possible explanations for the lack of polymorphism in Eα are: (1) the Eα chain plays such a uniquely critical structural/functional role in antigen presentation, T-cell activation, repertoire selection, and/or pairing with Eβ or other proteins for expression that it cannot vary, and mutations are selected against; (2) the Eα chain plays a less significant role than the outer domains of other major histocompatibility complex (MHC) proteins in determining the interactions with processed peptides or with T-cell receptor (TCR), so there is no selective pressure to maintain new mutations. To explore this question we compared the ability of transfectants expressing wild type (wt) EαEβ d and mutant Eα wt Eβ d proteins to present peptides and bacterial superantigens to T-cell hybridomas. Mutations at the Eα amino acid positions 31, 52, and 65&66, to residues that represent allelic alternatives in Aα chains, significantly reduced activation of peptide-specific T hybridomas, and mutations at 71 sometimes enhanced T-cell stimulation. None of the Eα mutations reduced, and some enhanced, superantigen stimulation of T-cell hybridomas. These results argue against the hypothesis that Eα chains are minimally polymorphic because mutations in Eα are functionally neutral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acha-Orbea, H., Waanders, G. A., Shakhov, A. N., and Held, W. Infections minor lymphocyte stimulating (MIs) antigens. Sem Immunol 4: 297–303, 1992.

    Google Scholar 

  • Andreas, A. D., Chandanayingyong, D., Attatippaholkun, W., Sirikong, M., Klaythong, R., Keller, E., and Albert, E. D. Unusual HLA-DR/DQ haplotypes: two different breakpoints in two different DR2-DQw3 haplotypes. Immunogenetics 30: 141–144, 1989.

    Google Scholar 

  • Ayane, M., Mengle-Gaw, L., McDevitt, H. O., Benoist, C., and Mathis, D. Eαu and Eβu chain association: where lies the anomaly? J Immunol 137: 948–951, 1986.

    Google Scholar 

  • Benoist, C. O., Mathis, D. J., Kanter, M. R., Williams II, V. E., and McDevitt, H. O. Regions of allelic hypervariability in the murine Aα immune response gene. Cell 34: 169–177, 1983.

    Google Scholar 

  • Bordignon, P. P., Fu, X.-t., Lanzavecchia, A., and Karr, R. W. Identification of HLA-DRα chain residues critical for binding of the toxic shock syndrom toxin superantigen. J Exp Med 1976: 1779–1784, 1992.

    Google Scholar 

  • Braunstein, N. S. and Germain, R. Allele-specific control of Ia molecule surface expression and conformation: implications for a general model of Ia structure-function relationships. Proc Natl Acad Sci USA 84: 2921–2925, 1987.

    Google Scholar 

  • Braunstein, N. S., Germain, R. N., Loney, K., and Berkowitz, N. Structurally interdependent and independent regions of allelic polymorphism in class II MHC molecules. J Immunol 145: 1635–1645, 1990.

    Google Scholar 

  • Brown, J. H., Jardetzdy, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. The three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364: 33–39, 1993.

    Google Scholar 

  • Choi, E., McIntyre, K., Germain, R. N., and Seidman, J. G. Murine I-Ab chain polymorphism: nucleotide sequences of three allelic I-Ab genes. Science 221: 283–286, 1983.

    Google Scholar 

  • Cole, B. C., David, C. S., Lynch, D. H., and Kartchner, D. R. The use of transfected fibroblasts and transgenic mice establishes that stimulation of T cells by the Mycoplasma arthritidis mitogen is mediated by Eα. J Immunol 144: 420–424, 1990.

    Google Scholar 

  • Cole, B. C., Daynes, R. A., Ward, J. R. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. III. Ir gene control of lymphocyte transformation correlates with binding of the mitogen to specific Ia bearing cells. J Immunol 129: 1352–1359, 1982.

    Google Scholar 

  • Das, H. K., Lawrance, S. K., and Weissman, S. M. Structure and nucleotide sequence of the heavy chain gene of HLA-DR. Proc Natl Acad Sci USA 80: 3543–3547, 1983.

    Google Scholar 

  • Davis, C. B., Michell, D. J., Wraith, D. C., Todd, J. A., Zamvil, S. S., McDevitt, H. O., Steinman, L., and Jones, P. P. Polymorphic residues on the I-Aβ chain modulate the stimulation of T cell clones specific for the N-terminal peptide of the autoantigen myelin basic protein. J Immunol 143: 2083–2093, 1989.

    Google Scholar 

  • Dellabona, P., Peccoud, J., Kappler, J., Marrack, P., Benoist, C., and Mathis, D. Superantigens interact with MHC class II molecules outside of the antigen groove. Cell 62: 1115–1121, 1990.

    Google Scholar 

  • Dunham, I., Carole, C. A., Dawkins, R. L., and Campbell, R. D. An analysis of variation in the long-range genomic organization of the human major histocompatibility complex class II region by pulsefield gel electrophoresis. Genomics 5: 787–796, 1989.

    Google Scholar 

  • Ehrich, E. W., Devanx, B., Pock, E. P., Jorgensen, J. L., Davis, M. M., and Chien, Y.-H. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J Exp Med 178: 713–722, 1993.

    Google Scholar 

  • Erlich, H. A. Evolutionary analysis of HLA class II polymorphism. In A. G. Gemaine, J.-P. Banga, and A. M. McGregor (eds.): The Molecular Biology of Autoimmune Disease, pp. 97–110, Springer, Berlin Heidelberg New York, 1990.

    Google Scholar 

  • Estess, P., Begovich, A. B., Koo, M., Jones, P. P., and McDevitt, H. O. Sequence analysis and structural-function correlations of murine q, k, u, s, and f haplotype I-A b cDNA clones. Proc Natl Acad Sci USA 83: 3594–3598, 1986.

    Google Scholar 

  • Fan, W., Kasahara, M., Gutknecht, J., Klein, D., Mayer, W., Jonker, M., and Klein, J. Shared class II MHC polymorphisms between humans and chimpanzees. Hum Immunol 26: 107–121, 1989.

    Google Scholar 

  • Figueroa, F., Tichy, H., Singleton, G., Franguedaksi-Tsolis, S., and Klein, J. High frequency of H-2 E α alleles among wild mice. Immunogenetics 30: 222–225, 1989.

    Google Scholar 

  • Germain, R. N. and Margulies, D. H. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 11: 403–450, 1993.

    Google Scholar 

  • Germain, R. N., Bentley, D. M., and Quill, H. Influence of allelic polymorphism on the assembly and cell surface expression of class II MHC (Ia) molecules. Cell 43: 233–242, 1985.

    Google Scholar 

  • Gregersen, P. K., Kao, H., Nunes-Roldan, A., Hurley, C. K., Karr, R. W., and Silver, J. Recombination sites in the HLA class II region are haplotype dependent. J Immunol 141: 1365–1368, 1988.

    Google Scholar 

  • Gyllensten, U. B. and Erlich, H. A. MHC class II haplotypes and linkage disequilibrium in primates. Hum Immunol 36:, 1–10, 1993.

    Google Scholar 

  • Jones, P. P., Begovich, A. B., Tacchini-Cottier, F. M., Vu, T. H. Evolution of class II genes: role of selection in both the maintenance of polymorphism and the retention of non-expressed alleles. Immunol Res 9: 200–211, 1990.

    Google Scholar 

  • Kappler, J. W., Roehm, N., and Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49: 273–280, 1987.

    Google Scholar 

  • Klein, J. and Klein, D. (eds.) Molecular Evolution of the Major Histocompatibility Complex, Springer, Berlin Heidelberg New York, 1991.

    Google Scholar 

  • Klein, J. and Figueroa, F. Polymorphism of the mouse H-2 loci. Immunol Rev 60: 23–57, 1981.

    Google Scholar 

  • Klein, J., O'hUigin, C., Kasaharo, M., Vincek, V., Klein, D., and Figueroa, F. Frozen haplotypes in Mhc evolution. In J. Kelin and D. Klein (eds): Molecular Evolution of the Major Histocompatibility Complex, pp. 261–286, Springer, Berlin Heidelberg New York, 1991.

    Google Scholar 

  • Kobori, J. A., Winoto, A., McNicholas, J., and Hood, L. Molecular characterization of the recombinant region of six murine major histocompatibility complex (MHC) I-region recombinants. J Mol Cell Immunol 1: 125–132, 1984.

    Google Scholar 

  • Korman, A. J., Auffray, C., Schamboeck, A., and Strominger, J. L. The amino acid sequence and gene organization of heavy chain of the HLA-DR antigen: homology to immunoglobulins. Proc Natl Acad Sci USA 79: 6013–6017, 1982.

    Google Scholar 

  • Kwok, W. W., Kuvats, S., Thurtle, P., and Nepom, G. T. HLA-DQ allelic polymorphisms constrain patterns of class II heterodimer formation. J Immunol 150: 2263–2272, 1993.

    Google Scholar 

  • Labrecque, N., Thibodean, J., and Sekaly, R.-P. Interactions between staphylococcal superantigens and MHC class II molecules. Sem Immunol 5: 23–32, 1993.

    Google Scholar 

  • Larhammar, D., Gustafsson, K., Claesson, L., Bill, P., William, K., Peterson, P. A., and Rask, L. Alpha chain of HLA-DR transplantation antigens is a member of the same protein superfamily as the immunoglobulins. Cell 30: 153–161, 1982.

    Google Scholar 

  • Lawrence, S. K., Karlsson, L., Price, J., Quarantar, V., Ron, Y., Sprent, J., and Peterson, P. A. Transgenic HLA-DRα faithfully reconstitutes I-E controlled immune functions and induced cross-tolerance to Eα in Eα 0 mutant mice. Cell 58: 583–594, 1989.

    Google Scholar 

  • Lee, J. S., Trowsdale, J., Travers, P. J., Carey, J., Grosveld, F., Jenkins, J., and Bodmer, W. F. Sequence of an HLA-DR α-chain cDNA clone and intron-exon organization of the corresponding gene. Nature 299: 750–752, 1982.

    Google Scholar 

  • Marrack, P., Winslow, G. M., Choi, Y., Scherer, M., Pullen, A., White, J., and Kappler, J. W. The bacterial and mouse mammary tumor virus superantigens; two different families of proteins with the same functions. Immunol Rev 131: 79–92, 1993.

    Google Scholar 

  • McNicholas, J., Steinmetz, M., Hunkapillar, T., Jones, P., and Hood, L. DNA sequence of the gene encoding the Eα Ia polypeptide of the BALB/c mouse. Science 218: 1229–1232, 1982.

    Google Scholar 

  • Morel, P. A., Livingstone, A. M., and Fathaman, C. G. Correlation of T cell receptor Vβ gene family with MHC restriction. J Exp Med 166: 583–588, 1987.

    Google Scholar 

  • Morris, V. L., Medeiros, E., Ringold, G. M., Bishop, J. M., and Varmus, H. E. Comparison of mouse mammary tumor virus-specific DNA in inbred, wild, and Asian mice, and in tumors and normal organs from inbred mice. J Mol Biol 114: 73–78, 1977.

    Google Scholar 

  • Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357, 1986.

    Google Scholar 

  • Racioppi, L., Ronchese, F., Schwartz, R. H., and Germain, R. N. The molecular basis of class II MHC allelic control of T cell responses. J Immunol 147: 3718–3727, 1991.

    Google Scholar 

  • Rosloniec, E. F., Vitez, L. J., Beck, B. N., Buerstedde, J.-M., Mckean, D. J., Benoist, C., Mathis, D., and Freed, J. H. I-Ak polymorphisms define a functionally dominant region for the presentation of hen egg lysozyme peptides. J Immunol 143: 50–58, 1989.

    Google Scholar 

  • Santamaria, P., Noreen, H. J., Lindstrom, A. L., Barbosa, J. J., Faras, A. J., Segall, M., and Rich, S. S. DRw52-group haplotypes are frequent acceptors of DRw15-Dw2 DQ genes in DQA1-DRB1 recombination. Immunogenetics 36: 56–63, 1992.

    Google Scholar 

  • Satyanarayana, K. and Strominger, J. DNA sequences near a meiotic recombination hotspot within the HLA-DQ region. Immunogenetics 35: 235–240, 1992.

    Google Scholar 

  • Simpson, E., Dyson, P. J., Knight, A. M., Robinson, P. J., Elliott, J. I., and Altmann, D. M. T-cell receptor repertoire selection by mouse mammary tumor viruses and MHC molecules. Immunol Rev 131: 93–115, 1993.

    Google Scholar 

  • Stroynowski, I. Molecules related to class I major histocompatibility complex antigens. Annu Rev Immunol 8: 501–530, 1990.

    Google Scholar 

  • Tomonari, K., Fairchild, S., and Rosenwasser, O. A. Influence of viral superantigens on Vβ- and Vα-specific positive and negative selection. Immunol Rev 131: 131–168, 1993.

    Google Scholar 

  • Uematsu, Y., Lindahl, K. F., and Steinmetz, M. The same MHC recombinational hot spots are active in crossing-over between wild/wild and wild/inbred mouse chromosomes. Immunogenetics 27: 96–101, 1988.

    Google Scholar 

  • Wakeland, K. E., Boehme, S., and She, J.-X. The generation and maintenance of MHC class II gene polymorphisms in rodents. Immunol Rev 113: 207–226, 1990.

    Google Scholar 

  • Woodland, D. L. and Blackman, M. A. How do T-cell receptors MHC molecules, and superantigens get together? Immunol Today 14: 208–212, 1993.

    Google Scholar 

  • Yang, C.-Y., Kratzin, H., Hilde, G., Thinnes, F. P., Kruse, T., Egert, G., Pauly, D., Kolbel, S., Wernet, P., and Hilschmann, N. Primary structure of class II human histocompatibility antigens. 2nd communication. Amino acid sequence of the N-terminal 179 residues of the α-chain of an HLA-Dw2/DR2 alloantigen. Hoppe-Seyler's Z Physiol Chem. 363: 671–676, 1982.

    Google Scholar 

  • Ye, Y., She, J.-X., and Wakeland, E. K. Diversification of class II Aα within the genus Mus. In J. Klein and D. Klein (eds.): Molecular Evolution of the Major Histocompatibility Complex, pp. 131–140, Springer, Berlin Heidelberg New York, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, ZT.E., Carswell-Crumpton, C., Cole, B.C. et al. The minimal polymorphism of class II Eα chains is not due to the functional neutrality of mutations. Immunogenetics 40, 9–20 (1994). https://doi.org/10.1007/BF00163959

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163959

Keywords

Navigation