Skip to main content
Log in

Pulling short DNA with mismatch base pairs

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Due to misincorporation during gene replication, the accuracy of the gene expression is often compromised. This results in a mismatch or defective pair in the DNA molecule (James et al. 2016). Here, we present our study of the stability of DNA with defects in the thermal and force ensembles. We consider DNA with a different number of defects from 2to16 and study how the denaturation process differs in both ensembles. Using a statistical model, we calculate the melting point of the DNA chain in both the ensemble. Our findings display different manifestations of DNA denaturation in thermal and force ensembles. While the DNA with defects denatures at a lower temperature than the intact DNA, the point from which the DNA is pulled is important in force ensemble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • (1999) Helicoidal model for DNA opening. Phys Lett A 253 (5-6): 358 - 369

  • Bhattacharjee SM (2000) Unzipping DNAs: towards the first step of replication. J Phys: Math Gen 33(45):L423–L428

    CAS  Google Scholar 

  • Branzei D, Foiani M (2005) The DNA damage response during DNA replication. Curr Opin Cell Biol 17(6):568–575

    Article  CAS  PubMed  Google Scholar 

  • Cocco S, Monasson R (1999) Statistical mechanics of torque induced denaturation of DNA. Phys Rev Lett 83(24):5178–5181

    Article  CAS  Google Scholar 

  • Cortez D (2019) Replication-coupled DNA repair. Molecular Cell 74(5):866–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danilowicz C (2004) Phys Rev Lett 93(078):101

    Google Scholar 

  • Dauxois T, Peyrard M, Bishop AR (1993) Entropy-driven DNA denaturation. Phys Rev E 47(1):R44–R47

    Article  CAS  Google Scholar 

  • Essevaz-Roulet B, Bockelmann U, Heslot F (1997) Proc Natl Acad Sci USA 94(11):935

    Google Scholar 

  • Frank-Kamenetskii MD, Prakash S (2014) Fluctuations in the DNA double helix: A critical review. Phys Life Rev 11(2):153–170

    Article  PubMed  Google Scholar 

  • Gupta D, Heinen CD (2019) The mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair 78:60–69

    Article  CAS  PubMed  Google Scholar 

  • James K, Gamba P, Cockell SJ, Zenkin N (2016) Misincorporation by RNA polymerase is a major source of transcription pausing in vivo. Nucleic Acids Res 45(3):1105–1113

    PubMed Central  Google Scholar 

  • Jeong J, Kim HD (2019) Base-pair mismatch can destabilize small DNA loops through cooperative kinking. Phys Rev Lett 122(218):101

    Google Scholar 

  • Kay J, Thadhani E, Samson L, Engelward B (2019) Inflammation-induced DNA damage, mutations and cancer. DNA Repair 83(102):673

    Google Scholar 

  • Kumar S, Li MS (2010) Biomolecules under mechanical force. Phys Repo 486(1–2):1–74

    CAS  Google Scholar 

  • Kumar S, Mishra G (2013) Phys Rev Lett 110(258):102

    Google Scholar 

  • Landuzzi F, Viader-Godoy X, Cleri F, Pastor I, Ritort F (2020) Detection of single DNA mismatches by force spectroscopy in short DNA hairpins. J Chem Phys 152(7):074–204

    Article  Google Scholar 

  • Lubensky DK, Nelson D (2000) Phys Rev Lett 85:1572

    Article  CAS  PubMed  Google Scholar 

  • Marenduzzo D, Bhattacharjee S, Maritan A, Orlandini E, Seno F (2001) Phys Rev Lett 88(028):102

    Google Scholar 

  • McCullagh M, Franco I, Ratner M, Schatz G (2013) J Phys Chem Lett 3:689

    Article  Google Scholar 

  • Mishra RK, Nath S, Kumar S (2015) Rupture of DNA aptamer: new insights from simulations. J Chem Phys 143(16):164–902

    Article  Google Scholar 

  • Motegi A, Masutani M, ichi Yoshioka K, Bessho T, (2019) Aberrations in DNA repair pathways in cancer and therapeutic significances. Seminars Cancer Biol 58:29–46

  • Pal T, Kumar S (2018) Europhys Lett 121(18):001

    Google Scholar 

  • Peyrard M, Bishop AR (1989) Statistical mechanics of a nonlinear model for DNA denaturation. Phys Rev Lett 62(23):2755–2758

    Article  CAS  PubMed  Google Scholar 

  • Pramanik S, Khamari L, Nandi S, Mukherjee S (2019) Discriminating single base pair mismatches in DNA using glutathione-templated copper nanoclusters. J Phys Chem C 123(47):29,047-29,056

    Article  CAS  Google Scholar 

  • Ritort F (2006) J Phys: Condens Matter 18:R531

    CAS  PubMed  Google Scholar 

  • Rodrigues Leal M, Weber G (2020) Sharp DNA denaturation in a helicoidal mesoscopic model. Chem Phys Lett 755(137):781

  • Rossetti G, Dans PD, Gomez-Pinto I, Ivani I, Gonzalez C, Orozco M (2015) The structural impact of DNA mismatches. Nucl Acids Res 43:4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proce Natl Acad Sci 95(4):1460–1465

    Article  CAS  Google Scholar 

  • Sebastian KL (2000) Phys Rev E 62:1128

    Article  CAS  Google Scholar 

  • Singh N, Singh Y (2001) Effect of defects on thermal denaturation of DNA oligomers. Phys Rev E 64(4):042–901

    Article  Google Scholar 

  • Singh N, Singh Y (2005) Statistical theory of force-induced unzipping of DNA. Europ Phys J E 17(1):7–19

    Article  CAS  Google Scholar 

  • Singh A, Singh N (2015) Pulling short DNA molecules having defects on different locations. Phys Rev E 92(032):703

    Google Scholar 

  • Smith S, Cui Y, Bustamante C (1996) Science 271:795

    Article  CAS  PubMed  Google Scholar 

  • Tikhomirova A, Beletskaya IV, Chalikian TV (2006) Stability of DNA duplexes containing gg, cc, aa, and tt mismatches. Biochemistry 45(10):563

    Google Scholar 

  • Tiwari V, Wilson DM (2019) DNA damage and associated DNA repair defects in disease and premature aging. Am J Human Genet 105(2):237–257

    Article  CAS  Google Scholar 

  • van Erp TS, Cuesta-Lopez S, Peyrard M (2006) Bubbles and denaturation in DNA. Eur Phys J E 20(4):421–434

    Article  PubMed  Google Scholar 

  • Yadav RK, Kapri R (2021) Unzipping of a double-stranded block copolymer DNA by a periodic force. Phys Rev E 103(012):413

    Google Scholar 

  • Yl Zhang, Zheng WM, Liu JX, Chen YZ (1997) Theory of DNA melting based on the peyrard-bishop model. Phys Rev E 56(6):7100–7115

    Article  Google Scholar 

  • Zhang J, Shih DJH, Lin SY (2020) Role of DNA repair defects in predicting immunotherapy response. Biomarker Res 8:23

    Article  Google Scholar 

  • Zoli M (2019) DNA size in confined environments. Phys Chem Chem Phys 21:12,566-12,575

    Article  CAS  Google Scholar 

  • Zoli M (2020) First-passage probability: a test for DNA hamiltonian parameters. Phys Chem Chem Phys 22:26,901-26,909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support (CRG/2022/000372) from the Science and Engineering Board (SERB), India.

Author information

Authors and Affiliations

Authors

Contributions

NS conceived of the project, developed the program. NM modified and executed the program; NS and NM analysed the results obtained. NS wrote the manuscript. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Navin Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Mathur, N. Pulling short DNA with mismatch base pairs. Eur Biophys J 52, 145–151 (2023). https://doi.org/10.1007/s00249-023-01659-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01659-8

Keywords

Navigation