Skip to main content
Log in

Interaction of gentamicin with phosphatidylserine/phosphatidylcholine mixtures in adsorption monolayers and thin liquid films: morphology and thermodynamic properties

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Gentamicin possesses strong adverse actions like oto and nephrotoxicity. The latter is a result of strong gentamicin–acid phospholipid interactions, resulting in cell fusion, fission, etc., ions as calcium interact with gentamicin and effectively deter its toxicity. In this work, the interactions of gentamicin and Ca2+ with phosphatidylserine/phosphatidylcholine (PS/PC) mixtures of different ratio are experimentally characterized. Special attention is paid to bridge thermodynamic and morphological properties of adsorption monolayers and thin liquid films (TLFs) composed of these lipid mixtures. Our results show that gentamicin decreases the stability of common black TLFs formed of pure PS coupled with suppression of lipid surface adsorption to the monolayers at the air–water interface; also, gentamicin reveals effects of lowering of lipid spreading on the interface and significant loss of material during monolayer cycling, increase of condensed phase, and organization of dense net-like domain monolayer texture. Gentamicin addition results in opposite effects for films formed of DPPC/PS (95:5) mixture. It increases the stability of Newton black TLFs formed by DPPC/PS correlated with faster and stronger surface adsorption and better surface spreading; also, gentamicin lowers the amount of condensed phase and organization of domains of smaller size. We also showed that Ca2+ itself decreases the stability of common black TLFs formed of PS accompanied with weaker surface adsorption, formation of higher amounts of condensed phase and organization of domains. In our experiments, Ca2+ softens, even deters, the effects of gentamicin on both PS and DPPC/PS films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Bilayers containing a water core between the film monolayers.

  2. Bilayers without water core between the film monolayers.

  3. See error bars of the curves DPPC/PS/Ca2+ and DPPC/PS/Ca2+/gentamicin at 10−6 M of Fig. 5.

References

  • Adamson A, Gast A (1997) Physical chemistry of surfaces. Wiley, New York

    Google Scholar 

  • Alexander AM, Gonda I, Harpur ES, Kayes JB (1979) Interaction of aminoglycoside antibiotics with phospholipid liposomes studies by microelectrophoresis. J Antibiot (Tokyo) 32:504–510

    CAS  Google Scholar 

  • Antoine DJ, Srivastava A, Pirmohamed M, Park BK (2009) Statins inhibit aminoglycoside accumulation and cytotoxicity to renal proximal tubule cells. Biochem Pharmacol. doi:10.1016/j.bcp.2009.09.021, http://www.dx.doi.org/10.1016/j.bcp.2009.09.021

  • Aramaki Y, Tsuchiya S (1989) Interactions between aminoglycosides and phospholipids using liposomes: a possible mechanism of nephrotoxicity. Pharm Res 6:362–366

    Article  CAS  PubMed  Google Scholar 

  • Baggio CL, Silveira AF, Hyppolito MA (2009) Experimental morphological and functional study of gentamicin cochleotoxicity using the regular dose given to neonates. Pro Fono 21:137–142

    PubMed  Google Scholar 

  • Bambeke FV, Tulkens P, Brasseur R, Mingeot-Leclercq M (1995) Aminoglycoside antibiotics induce aggregation but not fusion of negatively-charged liposomes. Eur J Pharmacol 289:321–333

    Article  PubMed  Google Scholar 

  • Baronas ET, Lee JW, Alden C, Hsieh FY (2007) Biomarkers to monitor drug-induced phospholipidosis. Toxicol Appl Pharmacol 218:72–78 doi: 10.1016/j.taap.2006.10.015 http://dx.doi.org/10.1016/j.taap.2006.10.015

    Google Scholar 

  • Bates DE, Beaumont SJ, Baylis BW (2002) Ototoxicity induced by gentamicin and furosemide. Ann Pharmacother 36:446–451

    Article  PubMed  Google Scholar 

  • Behnoud F, Davoudpur K, Goodarzi MT (2009) Can aspirin protect or at least attenuate gentamicin ototoxicity in humans? Saudi Med J 30:1165–1169

    PubMed  Google Scholar 

  • Bennett WM, Elliott WC, Houghton DC, Gilbert DN, DeFehr J, McCarron DA (1982) Reduction of experimental gentamicin nephrotoxicity in rats by dietary calcium loading. Antimicrob Agents Chemother 22:508–512

    CAS  PubMed  Google Scholar 

  • Brasseur R, Laurent G, Ruysschaert JM, Tulkens P (1984) Interactions of aminoglycoside antibiotics with negatively charged lipid layers. Biochemical and conformational studies. Biochem Pharmacol 33:629–637

    Article  CAS  PubMed  Google Scholar 

  • Bryan LE, Elzen HMVD (1977) Effects of membrane-energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob Agents Chemother 12:163–177

    CAS  PubMed  Google Scholar 

  • Carlier MB, Laurent G, Claes PJ, Vanderhaeghe HJ, Tulkens PM (1983) Inhibition of lysosomal phospholipases by aminoglycoside antibiotics: in vitro comparative studies. Antimicrob Agents Chemother 23:440–449

    CAS  PubMed  Google Scholar 

  • Christova Y, Enchev E, Lalchev Z (1999) Effects of pulmonary surfactant proteins sp-b and sp-c and calcium ions on the surface properties of hydrophobic fractions of lung surfactant. Eur Biophys J 28:59–66

    Article  CAS  PubMed  Google Scholar 

  • Chung L, Kaloyanides G, McDaniel R, McLaughlin A, McLaughlin S (1985) Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids. Biochemistry 24:442–452

    Article  CAS  PubMed  Google Scholar 

  • de Aquino TJM, de Oliveira JAA, Rossato M (2008) Ototoxicity and otoprotection in the inner ear of guinea pigs using gentamicin and amikacin: ultrastructural and functional aspects. Braz J Otorhinolaryngol 74:843–852

    PubMed  Google Scholar 

  • Döbereiner HG, Käs J, Noppl D, Sprenger I, Sackmann E (1993) Budding and fission of vesicles. Biophys J 65:1396–1403. doi:10.1016/S0006-3495(93)81203-7, http://www.dx.doi.org/10.1016/S0006-3495(93)81203-7

    Google Scholar 

  • Dominguez JH, Hale CC, Qulali M (1996) Studies of renal injury. i. gentamicin toxicity and expression of basolateral transporters. Am J Physiol 270:F245–F253

    CAS  PubMed  Google Scholar 

  • Dornbusch K (1980) Influence of medium composition on bacterial susceptibility testing to gentamicin and netilmicin. Scand J Infect Dis Suppl 23:46–53

    CAS  PubMed  Google Scholar 

  • East JE, Foweraker JE, Murgatroyd FD (2005) Gentamicin induced ototoxicity during treatment of enterococcal endocarditis: resolution with substitution by netilmicin. Heart 91:e32. doi:10.1136/hrt.2003.028308, http://www.dx.doi.org/10.1136/hrt.2003.028308

  • Eksperova D, Lalchev Z, Marinov B, Ognianov K (1984) [prenatal diagnosis of the idiopathic respiratory distress syndrome by using thin liquid films (foam films) at the solution/air phase interface.] Akush Ginekol (Sofiia) 23:457–462

    Google Scholar 

  • Exerowa D, Krugliakov P (1998) Foam and foam films—theory, experiment, application. Elsevier, Amsterdam

    Google Scholar 

  • Forge A, Zajic G, Davies S, Weiner N, Schacht J (1989) Gentamicin alters membrane structure as shown by freeze-fracture of liposomes. Hear Res 37:129–139

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Nagai J, Sawada T, Yumoto R, Takano M (2009) Effect of pegylation of n-wasp181-200 on the inhibitory potency for renal aminoglycoside accumulation. Bioconjug Chem. doi:10.1021/bc900094g, http://www.dx.doi.org/10.1021/bc900094g

  • Georgiev G, Lalchev Z (2004) Model study of interactions of high-molecular dextran sulfate with lipid monolayers and foam films. Eur Biophys J 33:742–748. doi:10.1007/s00249-004-0421-4, http://www.dx.doi.org/10.1007/s00249-004-0421-4

  • Georgiev GD, Georgiev GA, Lalchev Z (2007) Influence of steroid hormone progesterone on the properties of phosphatidyl serine monolayers and thin liquid films. Biophys Chem 130:48–54. doi:10.1016/j.bpc.2007.07.002, http://www.dx.doi.org/10.1016/j.bpc.2007.07.002

    Google Scholar 

  • Goodman FR (1978) Distribution of “4c-gentamicin in vascular smooth muscle. Pharmacology 16:17–25

    Article  CAS  PubMed  Google Scholar 

  • Gurnani K, Khouri H, Couture M, Bergeron MG, Beauchamp D, Carrier D (1995) Molecular basis of the inhibition of gentamicin nephrotoxicity by daptomycin; an infrared spectroscopic investigation. Biochim Biophys Acta 1237:86–94

    Article  PubMed  Google Scholar 

  • Hénon S, Meunier J (1993) Phase transitions in gibbs films: star textural defects in tilted mesophases. J Chem Phys 98:9148

    Article  Google Scholar 

  • Hirode M, Ono A, Miyagishima T, Nagao T, Ohno Y, Urushidani T (2008) Gene expression profiling in rat liver treated with compounds inducing phospholipidosis. Toxicol Appl Pharmacol 229:290–299. doi:10.1016/j.taap.2008.01.036, http://www.dx.doi.org/10.1016/j.taap.2008.01.036

    Google Scholar 

  • Huy PTB, Deffrennes D (1988) Aminoglycoside binding sites in the inner ears of guinea pigs. Antimicrob Agents Chemother 32:467–472

    Google Scholar 

  • Huy PTB, Deffrennes D (1990) Influence of membrane surface potential and of net charge on aminoglycoside binding to the organ of corti of guinea pigs. ORL J Otorhinolaryngol Relat Spec 52:121–126

    Google Scholar 

  • Jutila A (2001) Lateral heterogenity in model membranes: inducement and effects. PhD thesis, University of Helsinki

  • Kahlmeter G, Dahlager JI (1984) Aminoglycoside toxicity—a review of clinical studies published between 1975 and 1982. J Antimicrob Chemother 13(Suppl A):9–22

    Google Scholar 

  • Kim J, Mosior M, Chung LA, Wu H, McLaughli S (1991) Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J 60:135–148

    Article  CAS  PubMed  Google Scholar 

  • Kohlhepp SJ, Hou L, Gilbert DN (1994) Pig kidney (llc-pk1) cell membrane fluidity during exposure to gentamicin or tobramycin. Antimicrob Agents Chemother 38:2169–2171

    CAS  PubMed  Google Scholar 

  • Kornguth ML, Bayer WH, Kunin CM (1980) Binding of gentamicin to subcellular fractions of rabbit kidney: inhibition by spermine and other polyamines. J Antimicrob Chemother 6:121–131

    Article  CAS  PubMed  Google Scholar 

  • Kubo M, Gardner MF, Hostetler KY (1986) Binding of propranolol and gentamicin to small unilamellar phospholipid vesicles. Contribution of ionic and hydrophobic forces. Biochem Pharmacol 35:3761–3765

    Article  CAS  PubMed  Google Scholar 

  • Lalchev Z (1984) PhD thesis Sofia University

  • Lalchev Z (1997) Surface properties of lipids and proteins at bio-interfaces. CRC, Boca Raton

    Google Scholar 

  • Lalchev Z (2007) Colloid stability—the role of surface forces. In: Tadros TF (ed) Phospholipid foam films—types, properties and applications, vol 1. Wiley, New York, pp 383–408

  • Li J, Li QX, Xie XF, Ao Y, Tie CR, Song RJ (2009) Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur J Pharmacol 620:97–104. doi:10.1016/j.ejphar.2009.08.021, http://www.dx.doi.org/10.1016/j.ejphar.2009.08.021

  • Lipowsky R (1995) The morphology of lipid membranes. Curr Opin Struct Biol 5:531–540

    Article  CAS  PubMed  Google Scholar 

  • Mingeot-Leclercq MP, Tulkens PM (1999) Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 43:1003–1012

    CAS  PubMed  Google Scholar 

  • Mingeot-Leclercq MP, Laurent G, Tulkens PM (1988) Biochemical mechanism of aminoglycoside-induced inhibition of phosphatidylcholine hydrolysis by lysosomal phospholipases. Biochem Pharmacol 37:591–599

    Article  CAS  PubMed  Google Scholar 

  • Mingeot-Leclercq MP, Schanck A, Ronveaux-Dupal MF, Deleers M, Brasseur R, Ruysschaert JM, Laurent G, Tulkens PM (1989) Ultrastructural, physico-chemical and conformational study of the interactions of gentamicin and bis(beta-diethylaminoethylether) hexestrol with negatively-charged phospholipid layers. Biochem Pharmacol 38:729–741

    Article  CAS  PubMed  Google Scholar 

  • Myers DR, DeFehr J, Bennet WM, Porter GA, Olsen GD (1978) Gentamicin binding to serum and plasma proteins. Clin Pharmacol Ther 23:356–360

    CAS  PubMed  Google Scholar 

  • Naydenova S, Lalchev Z, Petrov AG, Exerowa D (1990) Pure and mixed lipid black foam films as models of membrane fusion. Eur Biophys J 17:343–347

    Article  CAS  PubMed  Google Scholar 

  • Ozbek E, Ilbey Y, Simsek A, Cekmen M, Mete F, Somay A (2009) Rosiglitazone, peroxisome proliferator receptor-gamma agonist, ameliorates gentamicin-induced nephrotoxicity in rats. Int Urol Nephrol. doi:10.1007/s11255-009-9645-7, http://www.dx.doi.org/10.1007/s11255-009-9645-7

  • Papahadjopoulos D, Vail WJ, Newton C, Nir S, Jacobson K, Poste G, Lazo R (1977) Studies on membrane fusion. iii. The role of calcium-induced phase changes. Biochim Biophys Acta 465:579–598

    Article  CAS  PubMed  Google Scholar 

  • Portis A, Newton C, Pangborn W, Papahadjopoulos D (1979) Studies on the mechanism of membrane fusion: evidence for an intermembrane ca2+-phospholipid complex, synergism with mg2+, and inhibition by spectrin. Biochemistry 18:780–790

    Article  CAS  PubMed  Google Scholar 

  • Reasor MJ, Kacew S (2001) Drug-induced phospholipidosis: are there functional consequences? Exp Biol Med (Maywood) 226:825–830

    CAS  Google Scholar 

  • Reasor MJ, Hastings KL, Ulrich RG (2006) Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 5:567–583. doi:10.1517/14740338.5.4.567, http://www.dx.doi.org/10.1517/14740338.5.4.567

    Google Scholar 

  • Rougier F, Claude D, Maurin M, Maire P (2004) Aminoglycoside nephrotoxicity. Curr Drug Targets Infect Disord 4:153–162

    Article  CAS  PubMed  Google Scholar 

  • Selimoglu E (2007) Aminoglycoside-induced ototoxicity. Curr Pharm Des 13:119–126

    Article  CAS  PubMed  Google Scholar 

  • Servais H, Ortiz A, Devuyst O, Denamur S, Tulkens PM, Mingeot-Leclercq MP (2008) Renal cell apoptosis induced by nephrotoxic drugs: cellular and molecular mechanisms and potential approaches to modulation. Apoptosis 13:11–32. doi:10.1007/s10495-007-0151-z, http://www.dx.doi.org/10.1007/s10495-007-0151-z

    Google Scholar 

  • Soejima A, Ishizuka S, Miyake N, Fukuoka K, Suzuki M, Kamiya Y, Nagasawa T (2000) Simultaneous inhibition of renal phospholipase a(2) and glutathione synthesis by manoalide and dl-buthionine sulfoximine induces acute tubular dysfunction in rats. Exp Nephrol 8:84–90

    Article  CAS  PubMed  Google Scholar 

  • Vitovic P, Alakoskela JM, Kinnunen PKJ (2008) Assessment of drug-lipid complex formation by a high-throughput langmuir-balance and correlation to phospholipidosis. J Med Chem 51:1842–1848. doi:10.1021/jm7013953, http://www.dx.doi.org/10.1021/jm7013953

    Google Scholar 

  • Vollhardt D, Melzer V (1997) Phase transition in adsorption layers at the air-water interface: bridging to Langmuir monolayers. J Phys Chem B 101:3370

    Google Scholar 

  • Watanabe A, Nagai J, Adachi Y, Katsube T, Kitahara Y, Murakami T, Takano M (2004) Targeted prevention of renal accumulation and toxicity of gentamicin by aminoglycoside binding receptor antagonists. J Control Release 95:423–433. doi:10.1016/j.jconrel.2003.12.005, http://www.dx.doi.org/10.1016/j.jconrel.2003.12.005

  • Wilschut J, Papahadjopoulos D (1979) Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous content. Nature 281:690–692

    Article  CAS  PubMed  Google Scholar 

  • Xia Z, Ying G, Hansson AL, Karlsson H, Xie Y, Bergstrand A, DePierre JW, Nässberger L (2000) Antidepressant-induced lipidosis with special reference to tricyclic compounds. Prog Neurobiol 60:501–512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NSFB—Bulgarian Ministry of Education and Science (grant N DO02-107/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Lalchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, G.D., Georgiev, G.A. & Lalchev, Z. Interaction of gentamicin with phosphatidylserine/phosphatidylcholine mixtures in adsorption monolayers and thin liquid films: morphology and thermodynamic properties. Eur Biophys J 39, 1301–1312 (2010). https://doi.org/10.1007/s00249-010-0583-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0583-1

Keywords

Navigation