Skip to main content
Log in

Rearrangement of erythrocyte band 3 molecules and reversible formation of osmotic holes under hypotonic conditions

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The complex phenomenon of rearrangement of band 3 molecules after erythrocyte swelling under hypotonic condition is considered. The rearrangement includes the increase of the mobile fraction and clustering of band 3. The self-associative tendency and the action of the elastic field generated within the lipid membrane after erythrocyte swelling result in equilibration of the number of molecules per cluster and the number of clusters. The local perturbation of the elastic field induces excitation of the cluster in the nearest neighbor and changes its packing state generating changes in the free volume within the cluster. The local perturbation could result in the reversible formation of osmotic hole. We formulated a model to predict changes of the cluster packing states generated by rearrangement of band 3 molecules on two time-scales. The phenomenon is examined on the basis of two experimental sets, i.e. low (5.2 mM Na3PO4 solution) and high (46.0 mM Na3PO4 solution) hypotonicities at 21°C, from Golan and Veatch (Proc Natl Acad Sci 77(5):2537–2541, 1980). Modeling considerations suggested that lower hypotonic conditions resulted in higher values of: the driving force of agglomeration of band 3 as a measure of self-associative tendency, the specific rate of cluster breaking, the specific rate of increase of the mobile fraction of band 3, and the dispersion of cluster sizes. Lower hypotonic conditions ensure the generation of a higher average value of the free energy within the membrane after erythrocyte swelling, which enables more intensive rearrangement of band 3 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asami K, Yamaguchi T (1999) Electrical and morphological changes of human erythrocytes under high hydrostatic pressure followed by dielectric spectroscopy. Ann Biomed Eng 27:427–435

    Article  CAS  PubMed  Google Scholar 

  • Blackman SM, Cobb CE, Beth AH, Piston DW (1996) The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy. Biophys J 71:194–208

    Article  CAS  PubMed  Google Scholar 

  • Bravina LV, Zabrodin EE (1997) Homogeneous nucleation: comparison between two theories. Phys Lett A 233:423–429

    Article  CAS  Google Scholar 

  • Danon D (1961) Osmotic hemolysis by a gradual decrease in the ionic strength of the surrounding medium. J Cell Comp Physiol 57:111–117

    Article  CAS  PubMed  Google Scholar 

  • Delano M (1995) Simple physical constraints in hemolysis. J Theor Biol 175:517–524

    Article  CAS  PubMed  Google Scholar 

  • Destainville N (2008) Cluster phases of membrane proteins. arXiv:cond-mat/0607400v2 [cond-mat.soft] 1–5

  • Edwards SF, Grinev DV (1998) Statistical mechanics of vibration-induces compaction of powders. Phys Rev E 58(4):4758–4762

    Article  CAS  Google Scholar 

  • Evans AR, Turner MS, Sens P (2003) Interactions between proteins bound to biomembranes. Phys Rev E 67:0419071–04190710

    Article  CAS  Google Scholar 

  • Fateev MP (2007) Transient kinetic of homogeneous nucleation. Probl At Sci Technol N3(2):368–371

    Google Scholar 

  • Gil T, Ipsen JH, Mouritsen OG, Sabra MC, Sperotto MM, Zuckermann MJ (1998) Theoretical analysis of protein organization in lipid membranes. Biochem Biophys Acta 1376:245–266

    CAS  PubMed  Google Scholar 

  • Golan DE, Veatch W (1980) Lateral mobility of band 3 in the human erythrocyte membrane studied by fluorescence photobleaching recovery: evidence for control by cytoskeletal interactions. Proc Natl Acad Sci 77(5):2537–2541

    Article  CAS  PubMed  Google Scholar 

  • Goldstein L, Davis-Amaral EM, Musch MW (1996) Organic osmotic channels: transport characteristics and regulation. Kidney Int 49:1690–1694

    Article  CAS  PubMed  Google Scholar 

  • Leiber MR, Steck TL (1982) A description of the holes in human erythrocyte membrane ghosts. J Biol Chem 257:11651–11659

    Google Scholar 

  • Li J, Dao M, Lim CT, Surech S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88:3707–3719

    Article  CAS  PubMed  Google Scholar 

  • Lieber MR, Hesse JE, Nickol JM, Felsenfeld G (1987) The mechanism of osmotic transfection of avian embryonic erythrocytes: analysis of a system for studying developmental gene expression. J Cell Biol 105:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Matayoshi ED, Sawyer WH, Jovin TM (1991) Rotational diffusion of band 3 in erythrocyte membranes. 2. Binding of cytoplasmic enzymes. Biochemistry 30:3538–3543

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski PH, Burzynska B, Zielenkiewicz P (2006) Theoretical model of reticulocyte to erythrocyte shape transformation. J Theor Biol 243:24–38

    Article  CAS  PubMed  Google Scholar 

  • Pribush A, Meyerstein D, Meyerstein N (2002) Kinetic of erythrocyte swelling and membrane hole formation in hypotonic media. Biochim Biophys Acta 1558:119–132

    Article  CAS  PubMed  Google Scholar 

  • Salhany JM, Cordes KA, Sloan RL (2000) Mechanism of band 3 dimer dissociation during incubation of erythrocyte membranes at 37 degrees C. Biochem J 345:33–41

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yamakose H, Suzuki Y (1993a) Participation of band 3 protein in hypotonic hemolysis of hyman erythrocytes. Biol Pharm Bull 16(2):188–194

    CAS  PubMed  Google Scholar 

  • Sato Y, Yamakose H, Suzuki Y (1993b) Mechanism of hypotonic hemolysis of human erythrocytes. Biol Pharm Bull 16(5):506–512

    CAS  PubMed  Google Scholar 

  • Saxton MJ (1990) Lateral diffusion in a mixture of mobile and immobile particles; A Monte Carlo study. Biophys J 58:1303–1306

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (1967) Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin. J Cell Biol 32(1):55–70

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Cheng D, Iles GH (1973) Structure of membrane holes in osmotic and saponin hemolysis. J Cell Biol 56:519–527

    Article  CAS  PubMed  Google Scholar 

  • Sens P, Turner MS (2004) Theoretical model for the formation of caveolae and similar membrane invaginations. Biophys J 86:2049–2057

    Article  CAS  PubMed  Google Scholar 

  • Sheets ED, Simson R, Jakobson K (1995) New insights into membrane dynamics from the analysis of cell surface interactions by physical methods. Curr Opin Cell Biol 7:707–714

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Boulter J, Harding SE, Colfen H, Watts A (1999) Hydrodynamics properties of hyman erythrocyte band 3 solubilized in reduced Triton X-100. Biophys J 76:2043–2055

    Article  CAS  PubMed  Google Scholar 

  • Tomishige M, Sako Y, Kusumi A (1998) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142(4):989–1000

    Article  CAS  PubMed  Google Scholar 

  • Wong P (1999) A basis of echynocytosis and stomatocytosis in the disc-sphere transformations of the erythrocyte. J Theor Biol 196:343–361

    Article  CAS  PubMed  Google Scholar 

  • Yeow EKL, Clayton AHA (2007) Enumeration of oligomerization states of membrane proteins in living cells by Homo-FRET spectroscopy and microscopy: theory and application. Biophys J 92:3098–3140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by grants (#142075) and Hemiron, Eureka (#4486) from the Ministry of Science and Environmental Protection, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Pajic-Lijakovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pajic-Lijakovic, I., Ilic, V., Bugarski, B. et al. Rearrangement of erythrocyte band 3 molecules and reversible formation of osmotic holes under hypotonic conditions. Eur Biophys J 39, 789–800 (2010). https://doi.org/10.1007/s00249-009-0554-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0554-6

Keywords

Navigation