Skip to main content
Log in

Acridine derivatives inhibit lysozyme aggregation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have screened a library of structurally distinct acridine derivatives (19 compounds) for their ability to inhibit lysozyme amyloid aggregation in vitro. Studied acridines were divided into three structurally different groups depending on the molecule planarity and type of the side chain—planar acridines, spiroacridines and tetrahydroacridines. Thioflavine T fluorescence assay and transmission electron microscopy were used for monitoring the inhibiting activity of acridines. We have found that both the structure of the acridine side chains and molecule planarity influence their antiamyloidogenic activity. The planar acridines inhibited lysozyme aggregation effectively. Spiroacridines and tetrahydroacridines had no significant effect on the prevention of lysozyme fibrillization, probably resulting from the presence of the heterocyclic 5-membered ring and non-planarity of molecule. Moreover, in the presence of some tetrahydroacridines the enhanced extent of aggregation was detected. We identified the most active acridine derivates from studied compound library characterized by low micromolar IC50 values, which indicate their possible application for therapeutic purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baglioni S, Casamenti F, Bucciantini M, Luheshi L, Taddei N, Chiti F, Dobson CM, Stefani M (2006) Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J Neurosci 26(31):8160–8167

    Article  Google Scholar 

  • Bennett MC (2005) The role of α-synuclein in neurodegenerative diseases. Pharmacol Ther 105:311–331

    Article  Google Scholar 

  • Booth D, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN, Dobson CM, Radford SE, Blake CCF, Pepys MB (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793

    Article  ADS  Google Scholar 

  • Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfoling disease. Nature 416:507–511

    Article  ADS  Google Scholar 

  • Canale C, Torrassa S, Rispoli P, Pelini A, Rolandi R, Bucciantini A, Stefani M, Gliozzi A (2006) Natively folded HypF-N and its early amyloid aggregates interact with phospholipid monolayers and destabilize supported lipid bilayers. Biophys J 91:4675–4588

    Article  Google Scholar 

  • Chamberlain AK, MacPhee CE, Zurdo J, Morozova-Roche LA, Hill HA, Dobson CM, Davis JJ (2000) Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys J 79:3282–3293

    Article  Google Scholar 

  • Canet D, Sunde M, Last AM, Miranker A, Spencer A, Robinson CV, Dobson CM (1999) Mechanistic studies of the folding of human lysozyme and the origin of amyloidogenic behaviour in its disease related variants. Biochemistry 38:6419–6427

    Article  Google Scholar 

  • Cao A, Hu D, Lai L (2004) Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Sci 13:319–324

    Article  Google Scholar 

  • Caughey WS, Raymond LD, Horiuchi M, Caughey B (1998) Inhibition of protease-resistant prion protein formation by porphyrins and phthalocyanines. Proc Natl Acad Sci USA 95(21):12117–12122

    Article  ADS  Google Scholar 

  • Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 96:3590–3594

    Article  ADS  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrilization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576

    Article  ADS  Google Scholar 

  • Cooper JH (1974) Selective staining as a function of amyloid composition and structure: histochemical analysis of the alkaline Congo Red, standardized toluidine blue and iodine methods. Lab Invest 31:232–238

    Google Scholar 

  • DeFelice FG, Houzel JC, Garcia-Abreu J, Louzada PRF, Afonso RC, Meirelles NL, Lent R, Neto MV, Ferreira ST (2001) Inhibition of Alzheimer’s disease β-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer’s theraphy. FASEB J 15:1297–1299

    Google Scholar 

  • DeFelice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    Article  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  Google Scholar 

  • Dobson CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans Rsoc Lond B Biol Sci 356:133–145

    Article  Google Scholar 

  • Fandrich M, Fletcher MA, Dobson CM (2001) Amyloid fibrils from muscle myoglobin. Nature 410:165–166

    Article  ADS  Google Scholar 

  • Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases, IUBMB Life 59:332–345

    Article  Google Scholar 

  • Funahashi J, Takano K, Ogasahara K, Yamagata Y, Yutani K (1996) The structure, stability, and folding process of amyloidogenic mutant human lysozyme. J Biochem 120:1216–1223

    Google Scholar 

  • Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  ADS  Google Scholar 

  • Gouras GK, Almeida CG, Takahashi RH (2005) Intraneuronal Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging 26:1235–1244

    Article  Google Scholar 

  • Guijarro JII, Sunde M, Jones JA, Campbell ID, Dobson CM (1998) Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci USA 95:4224–4228

    Article  ADS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  Google Scholar 

  • Hou X, Parkington HC, Coleman HA, Mechler A, Martin LL, Aguilar MI, Small DH (2000) Transthyretin oligomers induce calcium influx via voltage-gated calcium channels. J Mol Biol 300(5):1033–1039

    Article  Google Scholar 

  • Khlistunova I, Biernat J, Wang YP, Pickhardt M, von Bergen M, Gazova Z, Mandelkow EM, Mandelkow E (2006) Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 281:1205–1214

    Article  Google Scholar 

  • Klunk WE, Pettigrew JW, Abraham DJ (1989) Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem. Cytochem 37(8):1273–1281

    Google Scholar 

  • Koo EH, Lansbury PT, Kelly JW (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 96:9989–9990

    Article  ADS  Google Scholar 

  • Korth C, May BCH, Cohen FE, Prusiner SB (2001) Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. PNAS 98:9836–9841

    Article  ADS  Google Scholar 

  • Kristian P, Hamulakova S, Bernat J, Imrich J, Voss G, Busova T (1998) Synthesis of acetylcholinesterase inhibitors on the basis of 9-isothiocyanato-1,2,3,4-tetrahydroacridine: 2-[(1,2,3,4-tetrahydroacridin-9-yl)imino]-3-substituted 1,3-thiazolidin-4-ones. Heterocycles 49:197–204

    Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Tromer B, Violc KL, Wals P, Zhang C, Finch CE Krafft GA, Klein WLn (1998) Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  ADS  Google Scholar 

  • Lansbury PT Jr (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA 96:3342–3344

    Article  ADS  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  Google Scholar 

  • LeVine H (1993) Thioflavine T interaction with synthetic Alzheimer´s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer´s disease. Am J Pathol 155(3):853–862

    Google Scholar 

  • May BCH, Fafarman AT, Hong SB, Rogers M, Deady LW, Prusiner SB, Cohen FE (2003) Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. PNAS 100:3416–3421

    Article  ADS  Google Scholar 

  • Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med 349:583–596

    Article  Google Scholar 

  • Moreira PI, Honda K, Liu Q, Santos MS, Oliviera CR, Aliev G, Nunomura A, Zhu X, Smith MA, Perry G (2005) Oxidative stress: the old enemy in Alzheimer´s disease pathophysiology. Curr Alzheimer Res 2:403–408

    Article  Google Scholar 

  • Morozova-Roche LA, Zurdo J, Spencer A, Noppe W, Receveur V, Archer DB, Joniau M, Dobson CM (2000) Amyloid fibril formation an seeding by wild-type human lysozyme and its disease-related mutational variants. J Struct Biol 130:339–351

    Article  Google Scholar 

  • Nguyen JT, Inouye H, Baldwin MA, Fletterick RJ, Cohen FE, Prusiner SB, Kirschner DA (1995) X-ray diffraction of scrapie prion rods and PrP peptides. J Nol Biol 252:412–422

    Article  Google Scholar 

  • Ono K, Hamaguchi T, Naiki H, Yamada M (2006) Anti-amyloidogenic effect of antioxidants: implication for the prevention and therapeutics of Alzheimer’s disease. Biochim Biophys Acta 1762:575–586

    Google Scholar 

  • Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CCF, Terry CJ, Feest TG, Zalin AM, Hsuan JJ (1993) Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature 362:553–557

    Article  ADS  Google Scholar 

  • Pickhardt M, Gazova Z, von Bergen M, Khlistunova I, Wang Y, Hascher A, Mandelkow EM, Biernat J, Mandelkow E (2005) Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J Biol Chem 280:3628–3635

    Article  Google Scholar 

  • Pickhardt M, Biernat J, Khlistunova I, Wang Y-P, Gazova Z, Mandelkow E-M, Mandelkow E (2007) N-Phenylamine derivatives as aggregation inhibitors in cell models of tauopathy. Curr Alzheimer Res 4:397–402

    Article  Google Scholar 

  • Priola SA, Raines A, Caughey B (2000) Porphyrin and phthalocyanine antiscrapie compounds. Science 287(5457):1503–1506

    Article  ADS  Google Scholar 

  • Raghu P, Reddy GB, Sivakumar B (2002) Inhibition of transthyretin amyloid fibril formation by 2,4-dinitrophenol through tetramer stabilization. Arch Biochem Biophys 400:43–47

    Article  Google Scholar 

  • Reixach N, Deechongkit S, Jiang X, Kelly JW, Buxbaum JN (2004) Tissue damage in the amyloidosis: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc Natl Acad Sci USA 101:2817–2822

    Article  ADS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316(5825):750–754

    Article  ADS  Google Scholar 

  • Serpell LC, Sunde M, Benson MD, Tennent GA, Pepys MB, Fraser PE (2000) The protofilament substructure of amyloid fibrils. J Mol Biol 300(5):1033–1039

    Article  Google Scholar 

  • Sipse JD (2005) Amyloid Proteins. Wiley-VCH Verlag GmbH and Co. KgaA, Weinheim Germany

    Google Scholar 

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  Google Scholar 

  • Taniguchi S, Suzuki N, Masuda M, Hisanaga S, Iwatsubo T, Goedert M, Hasegawa M (2005) Inhibition of heparin-induced tau filament formation by phenotiazines, polyphenols, and porphyrins. J Biol Chem 280(9):7614–7623

    Article  Google Scholar 

  • Tomaščiková J, Imrich J, Danihel I, Böhm S, Kristian P (2007) Heterocyclization of Acridin-9-yl Thiosemicarbazides with Dimethyl Acetylenedicarboxylate. Coll Czech Chem Commun 72:347–362

    Article  Google Scholar 

  • Tomaščiková J, Danihel I, Böhm S, Imrich J, Kristian P, Potocnak I, Cejka J, Klika KD (2008) Molecular and solid-state structure of methyl [2-(acridin-9-ylimino)-3-(tert-butylamino)-4-oxothiazolidin-5-ylidene]acetate. J Mol Struct 875:419–426

    Article  ADS  Google Scholar 

  • Valleix S, Drunat S, Philit JB, Adoue D, Piette JC, Droz D (2002) Hereditary renal amyloidosis caused by a new variant lysozyme W64R in a French family. Kidney Int 61:907–912

    Article  Google Scholar 

  • Vieira MNN, Figueroa-Villar JD, Meirelles MNL, Ferreira ST, De Felice FG (2006) Small Molecule Inhibitors of Lysozyme Amyloid Aggregation. Cell Biochem Biophys 44:549–553

    Article  Google Scholar 

  • Vieira MNN, Forny-Germano L, Saraiva LM, Sebollela A, Martinez AMB, Houzel J-C, De Felice FG, Ferreira ST (2007) Soluble oligomers from a non-disease related protein mimic Aβ-induced tau hyperphosphorylation and neurodegeneration. J Neurochem 103:736–748

    Article  Google Scholar 

  • Vernaglia BA, Huang J, Clark ED (2004) Guanidie hydrochloride can induce amyloid fiblril firmation from hen egg-white lysozyme. Biomacromolecules 5:1362–1370

    Article  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    Article  ADS  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11(3):213–228

    Article  Google Scholar 

  • Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Abeta distinguish Alzheimer´s disease from normal and pathologic aging. Expert Neurol 158:328–337

    Article  Google Scholar 

  • Wischik CM, Edwards PC, Lai RYK, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. PNAS 93(20):11213–11218

    Article  ADS  Google Scholar 

  • Yazaki M, Farrell SA, Benson MD (2003) A novel lysozyme mutation Phe57Ile associated with hereditary renal amyloidosis. Kidney Int 63:1652–1657

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the research grants from the Slovak Grant Agency VEGA No. 7055, 2471, 6167, 0056 and VVGS grant PF8/2007/CH. Dr. M. Vilkova, Dr. S. Hamulakova and Dr. E. Balentova are thanked for kind providing of selected tested compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Gazova.

Additional information

Regional Biophysics Conference of the National Biophysical Societies of Austria, Croatia, Hungary, Italy, Serbia, and Slovenia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazova, Z., Bellova, A., Daxnerova, Z. et al. Acridine derivatives inhibit lysozyme aggregation. Eur Biophys J 37, 1261–1270 (2008). https://doi.org/10.1007/s00249-008-0313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0313-0

Keywords

Navigation