Skip to main content
Log in

The Microbiota of a Mite Prey-Predator System on Different Host Plants Are Characterized by Dysbiosis and Potential Functional Redundancy

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbiota has diverse roles in the life cycles of their hosts, affecting their growth, development, behavior, and reproduction. Changes in physiological conditions of the host can also impact the assemblage of host-associated microorganisms. However, little is known of the effects of host plant–prey–predatory mite interactions on mite microbiota. We compared the microbial communities of eggs and adult females of the two˗spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and of adult females of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) on four different host plants (cotton, maize, pinto bean, and tomato) by metabarcoding sequencing of the V3–V4 region of the 16S ribosomal RNA gene (16S rRNA), using the Illumina MiSeq platform. Only the egg microbiota of T. urticae was affected by the host plant. The microbiota of the predatory mite N. californicus was very different from that of its prey, and the predator microbiota was unaffected by the different host plant–prey systems tested. Only the microbiota of the eggs of T. urticae carried Serratia as a high fidelity-biomarker, but their low abundance in T. urticae adult females suggests that the association between Serratia and T. urticae is accidental. Biomarker bacteria were also detected in the microbiota of adult females of T. urticae and N. californicus, with different biomarkers in each host plant species. The microbiota associated with eggs and adult females of T. urticae and adult females of N. californicus differed in their functional potential contributions to the host mite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Brinker P, Fontaine MC, Beukeboom LW, Salles JF (2019) Host, symbionts, and the microbiome: the missing tripartite interaction. Trends Microbiol 27:480–488. https://doi.org/10.1016/j.tim.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  2. Cotter SC, Pincheira-Donoso D, Thorogood R (2019) Defences against brood parasites from a social immunity perspective. Philos Trans R Soc B 374:20180207. https://doi.org/10.1098/rstb.2018.0207

    Article  CAS  Google Scholar 

  3. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47. https://doi.org/10.1111/j.1365-2435.2008.01442.x

    Article  Google Scholar 

  4. Leftwich PT, Edgington MP, Chapman T (2020) Transmission efficiency drives host–microbe associations. Proc R Soc B 287:20200820. https://doi.org/10.1098/rspb.2020.0820

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fisher RM, Henry LM, Cornwallis CK et al (2017) The evolution of host-symbiont dependence. Nat Commun 8:15973. https://doi.org/10.1038/ncomms15973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Van Ham RCHJ, Kamerbeek J, Palacios C et al (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586. https://doi.org/10.1073/pnas.0235981100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma W-J, Vavre F, Beukeboom LW (2014) Manipulation of arthropod sex determination by endosymbionts: diversity and molecular mechanisms. Sex Dev 8:59–73. https://doi.org/10.1159/000357024

    Article  CAS  PubMed  Google Scholar 

  8. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543. https://doi.org/10.1111/j.1365-2311.2011.01318.x

    Article  Google Scholar 

  9. Zhang X-F, Zhao D-X, Li H-S, Hong X-Y (2012) Expression of cytoplasmic incompatibility and host fitness effects in field populations of Sogatella furcifera infected with Cardinium. J Econ Entomol 105:2161–2166. https://doi.org/10.1603/EC12268

    Article  PubMed  Google Scholar 

  10. Schausberger P, Gotoh T, Sato Y (2019) Spider mite mothers adjust reproduction and sons’ alternative reproductive tactics to immigrating alien conspecifics. R Soc open Sci 6:191201. https://doi.org/10.1098/rsos.191201

    Article  PubMed  PubMed Central  Google Scholar 

  11. Santos-Garcia D, Mestre-Rincon N, Zchori-Fein E, Morin S (2020) Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J 14:847–856. https://doi.org/10.1038/s41396-019-0576-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496. https://doi.org/10.1111/mec.12421

    Article  PubMed  Google Scholar 

  13. Kikuchi Y, Hayatsu M, Hosokawa T et al (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109:8618–8622. https://doi.org/10.1073/pnas.1200231109

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Almeida LG, de Moraes LAB, Trigo JR et al (2017) The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: a potential source for biotechnological exploitation. PLoS One 12:e0174754. https://doi.org/10.1371/journal.pone.0174754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomes AFF, Omoto C (2004) Cônsoli FL (2020) Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J Pest Sci 93:833–851. https://doi.org/10.1007/s10340-020-01202-0

    Article  Google Scholar 

  16. Chu C-C, Spencer JL, Curzi MJ et al (2013) Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc Natl Acad Sci USA 110:11917–11922. https://doi.org/10.1073/pnas.1301886110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yun J-H, Roh SW, Whon TW et al (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254. https://doi.org/10.1128/AEM.01226-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gora NV, Serga SV, Maistrenko OM et al (2020) Climate factors and Wolbachia infection frequencies in natural populations of Drosophila melanogaster. Cytol Genet 54:189–198. https://doi.org/10.3103/S0095452720030044

    Article  Google Scholar 

  19. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38:433–437. https://doi.org/10.1111/een.12020

    Article  Google Scholar 

  20. Näsvall K, Wiklund C, Mrazek V et al (2021) Host plant diet affects growth and induces altered gene expression and microbiome composition in the wood white (Leptidea sinapis) butterfly. Mol Ecol 30:499–516. https://doi.org/10.1111/mec.15745

    Article  CAS  PubMed  Google Scholar 

  21. Ospina OE, Massey SE, Verle Rodrigues JC (2016) Reduced diversity in the bacteriome of the phytophagous mite Brevipalpus yothersi (Acari: Tenuipalpidae). Insects 7:80. https://doi.org/10.3390/insects7040080

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sharon G, Segal D, Ringo JM et al (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107:20051–20056. https://doi.org/10.1073/pnas.1009906107

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667–669. https://doi.org/10.1126/science.1240659

    Article  CAS  PubMed  Google Scholar 

  24. Pekas A, Palevsky E, Sumner JC et al (2017) Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae). Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-00046-6

    Article  CAS  Google Scholar 

  25. Gols R, Schütte C, Stouthamer R, Dicke M (2007) PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae). Biol Control 42:316–325. https://doi.org/10.1016/j.biocontrol.2007.06.001

    Article  CAS  Google Scholar 

  26. Tinker KA, Ottesen EA (2018) The hindgut microbiota of praying mantids is highly variable and includes both prey-associated and host-specific microbes. PLoS One 13:e0208917. https://doi.org/10.1371/journal.pone.0208917

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sugawara R, Ullah MS, Ho C-C, Gotoh T (2018) Impact of temperature-mediated functional responses of Neoseiulus womersleyi and N. longispinosus (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae). Biol Control 126:26–35. https://doi.org/10.1016/j.biocontrol.2018.07.010

    Article  Google Scholar 

  28. McMurtry JA, De Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320. https://doi.org/10.11158/saa.18.4.1

    Article  Google Scholar 

  29. Gilbert MTP, Moore W, Melchior L, Worobey M (2007) DNA extraction from dry museum beetles without conferring external morphological damage. PLoS One 2:e272. https://doi.org/10.1371/journal.pone.0000272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  31. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. R Core Team (2021) R: a language and environment for statistical computing, v.4.0.3. Found Stat Comput, Vienna, Austria. https://www.R-project.org/. Accessed September and October 2021

  33. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  34. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  36. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  37. Lozupone CA, Hamady M, Scott KT, Knight R (2007) Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. https://doi.org/10.1128/AEM.01996-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15:799–821. https://doi.org/10.1038/s41596-019-0264-1

    Article  CAS  PubMed  Google Scholar 

  40. Dhariwal A, Chong J, Habib S et al (2017) MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res 45:W180–W188. https://doi.org/10.1093/nar/gkx295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  42. Krzywinski M, Altman N (2014) Visualizing samples with box plots. Nat Methods 11:119–120. https://doi.org/10.1038/nmeth.2813

    Article  CAS  PubMed  Google Scholar 

  43. Segata N, Izard J, Waldron L et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  Google Scholar 

  44. Iwai S, Weinmaier T, Schmidt BL et al (2016) Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One 11:e0166104. https://doi.org/10.1371/journal.pone.0166104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Narayan NR, Weinmaier T, Laserna-Mendieta EJ et al (2020) Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genomics 21:1–12. https://doi.org/10.1186/s12864-019-6427-1

    Article  CAS  Google Scholar 

  46. Koosha M, Vatandoost H, Karimian F et al (2019) Effect of Serratia AS1 (Enterobacteriaceae: Enterobacteriales) on the fitness of Culex pipiens (Diptera: Culicidae) for paratransgenic and RNAi approaches. J Med Entomol 56:553–559. https://doi.org/10.1093/jme/tjy183

    Article  CAS  PubMed  Google Scholar 

  47. Perreau J, Patel DJ, Anderson H et al (2021) Vertical transmission at the pathogen-symbiont interface: Serratia symbiotica and aphids. MBio 12:e00359-e421. https://doi.org/10.1128/mBio.00359-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kobiałka M, Michalik A, Świerczewski D, Szklarzewicz T (2019) Complex symbiotic systems of two treehopper species: Centrotus cornutus (Linnaeus, 1758) and Gargara genistae (Fabricius, 1775) (Hemiptera: Cicadomorpha: Membracoidea: Membracidae). Protoplasma 257:819–831. https://doi.org/10.1007/s00709-019-01466-z

    Article  CAS  PubMed  Google Scholar 

  49. De Vleesschauwer D, Höfte M (2003) Using Serratia plymuthica to control fungal pathogens of plants. CAB Rev 2:046. https://doi.org/10.1079/PAVSNNR20072046

    Article  Google Scholar 

  50. Crooker AR (2000) A Rickettsia in the ovary of the twospotted spider mite, Tetranychus urticae Koch (Acarina: Tetranychedae). Microsc Microanal 6:662–663. https://doi.org/10.1017/S1431927600035807

    Article  Google Scholar 

  51. Zhao D-X, Zhang X-F, Chen D-S et al (2013) Wolbachia-host interactions: host mating patterns affect Wolbachia density dynamics. PLoS One 8:e66373. https://doi.org/10.1371/journal.pone.0066373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu Y-X, Song Y-L, Hoffmann AA et al (2019) A change in the bacterial community of spider mites decreases fecundity on multiple host plants. MicrobiologyOpen 8:e00743. https://doi.org/10.1002/mbo3.743

    Article  CAS  PubMed  Google Scholar 

  53. Zhu L-Y, Zhang K-J, Zhang Y-K et al (2012) Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65:516–523. https://doi.org/10.1007/s00284-012-0190-8

    Article  CAS  PubMed  Google Scholar 

  54. Swei A, Kwan JY (2017) Tick microbiome and pathogen acquisition altered by host blood meal. ISME J 11:813–816. https://doi.org/10.1038/ismej.2016.152

    Article  PubMed  Google Scholar 

  55. Giorgini M, Bernardo U, Monti MM et al (2010) Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microbiol 76:2589. https://doi.org/10.1128/AEM.03154-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brumin M, Kontsedalov S, Ghanim M (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Sci 18:57–66. https://doi.org/10.1111/j.1744-7917.2010.01396.x

    Article  Google Scholar 

  57. Hunter DJ, Torkelson JL, Bodnar J et al (2015) The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PLoS One 10:e0144552. https://doi.org/10.1371/journal.pone.0144552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shan H, Liu Y, Luan J, Liu S (2021) New insights into the transovarial transmission of the symbiont Rickettsia in whiteflies. Sci China Life Sci 64:1174–1186. https://doi.org/10.1007/s11427-020-1801-7

    Article  PubMed  Google Scholar 

  59. Caspi-Fluger A, Inbar M, Mozes-Daube N et al (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc R Soc B Biol Sci 279:1791–1796. https://doi.org/10.1098/rspb.2011.2095

    Article  CAS  Google Scholar 

  60. Sourassou NF, Hanna R, Breeuwer JAJ et al (2014) The endosymbionts Wolbachia and Cardinium and their effects in three populations of the predatory mite Neoseiulus paspalivorus. Exp Appl Acarol 64:207–221. https://doi.org/10.1007/s10493-014-9820-0

    Article  Google Scholar 

  61. Charlat S, Hurst GDD, Merçot H (2003) Evolutionary consequences of Wolbachia infections. Trends Genet 19:217–223. https://doi.org/10.1016/S0168-9525(03)00024-6

    Article  CAS  PubMed  Google Scholar 

  62. Zhu Y-X, Song Y-L, Zhang Y-K et al (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Appl Environ Microbiol 84:e02546-e2617. https://doi.org/10.1128/AEM.02546-17

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zélé F, Santos JL, Godinho DP, Magalhães S (2018) Wolbachia both aids and hampers the performance of spider mites on different host plants. FEMS Microbiol Ecol 94:fiy187. https://doi.org/10.1093/femsec/fiy187

    Article  CAS  Google Scholar 

  64. Sumner-Kalkun JC, Baxter I, Perotti MA (2020) Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata). Exp Appl Acarol 81:389–408. https://doi.org/10.1007/s10493-020-00520-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Coon KL, Valzania L, Brown MR, Strand MR (2020) Predaceous Toxorhynchites mosquitoes require a living gut microbiota to develop. Proc R Soc B Biol Sci 287:20192705. https://doi.org/10.1098/rspb.2019.2705

    Article  Google Scholar 

  66. Dion-Phénix H, Charmantier A, de Franceschi C et al (2021) Bacterial microbiota similarity between predators and prey in a blue tit trophic network. ISME J 15:1098–1107. https://doi.org/10.1038/s41396-020-00836-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu G, Zheng X, Long H et al (2021) Gut bacterial and fungal communities of the wild and laboratory-reared Thitarodes larvae, host of the Chinese medicinal fungus Ophiocordyceps sinensis on Tibetan plateau. Insects 12. https://doi.org/10.3390/insects12040327

  68. König H (2006) Bacillus species in the intestine of termites and other soil invertebrates. J Appl Microbiol 101:620–627. https://doi.org/10.1111/j.1365-2672.2006.02914.x

    Article  PubMed  Google Scholar 

  69. Zhu Y-X, Song Z-R, Song Y-L et al (2020) The microbiota in spider mite feces potentially reflects intestinal bacterial communities in the host. Insect Sci 27:859–868. https://doi.org/10.1111/1744-7917.12716

    Article  CAS  PubMed  Google Scholar 

  70. Hu Z, Chen X, Chang J et al (2018) Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput Illumina sequencing. PeerJ 6:e5537. https://doi.org/10.7717/peerj.5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frigerio J, Agostinetto G, Galimberti A et al (2020) Tasting the differences: microbiota analysis of different insect-based novel food. Food Res Int 137:109426. https://doi.org/10.1016/j.foodres.2020.109426

    Article  CAS  PubMed  Google Scholar 

  72. Mercado-Blanco J, Bakker PAHM (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389. https://doi.org/10.1007/s10482-007-9167-1

    Article  PubMed  Google Scholar 

  73. Kupferschmied P, Maurhofer M, Keel C (2013) Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci 4:287. https://doi.org/10.3389/fpls.2013.00287

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rajkumar M, Bruno LB, Banu JR (2017) Alleviation of environmental stress in plants: the role of beneficial Pseudomonas spp. Crit Rev Environ Sci Technol 47:372–407. https://doi.org/10.1080/10643389.2017.1318619

    Article  Google Scholar 

  75. Aksoy HM, Ozman-Sullivan SK, Ocal H et al (2008) The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae). In: Bruin J, van der Geest LPS (eds) Diseases of mites and ticks. Springer, Dordrecht, pp 223–230. https://doi.org/10.1007/978-1-4020-9695-2_18

  76. Quesssaoui R, Bouharroud R, Amarraque A et al (2017) Ecological applications of Pseudomonas as a biopesticide to control two-spotted mite Tetranychus urticae: chitinase and HCN production. J Plant Prot Res 57:409–416. https://doi.org/10.1515/jppr-2017-0055

    Article  CAS  Google Scholar 

  77. Flury P, Vesga P, Péchy-Tarr M et al (2017) Antimicrobial and insecticidal: cyclic lipopeptides and hydrogen cyanide produced by plant-beneficial Pseudomonas strains CHA0, CMR12a, and PCL1391 contribute to insect killing. Front Microbiol 8:100. https://doi.org/10.3389/fmicb.2017.00100

    Article  PubMed  PubMed Central  Google Scholar 

  78. Friman J, Pineda A, Gershenzon J et al (2021) Differential effects of the rhizobacterium Pseudomonas simiae on above- and belowground chewing insect herbivores. J Appl Entomol 145:250–260. https://doi.org/10.1111/jen.12842

    Article  CAS  Google Scholar 

  79. Kupferschmied P, Chai T, Flury P et al (2016) Specific surface glycan decorations enable antimicrobial peptide resistance in plant-beneficial pseudomonads with insect-pathogenic properties. Environ Microbiol 18:4265–4281. https://doi.org/10.1111/1462-2920.13571

    Article  CAS  PubMed  Google Scholar 

  80. Vacheron J, Péchy-Tarr M, Brochet S et al (2019) T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J 13:1318–1329. https://doi.org/10.1038/s41396-019-0353-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Erban T, Rybanska D, Harant K et al (2016) Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Front Physiol 7:53. https://doi.org/10.3389/fphys.2016.00053

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the scholarship granted to BLM (Grant 2018/24768-9). This study is part of a BIOTA/FAPESP project (Process 2017/12004-1).

Funding

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for the scholarship granted to BLM (Grant 2018/24768–9). This study is part of a BIOTA/FAPESP project (Process 2017/12004–1).

Author information

Authors and Affiliations

Authors

Contributions

BLM: conceptualization, methods, formal analysis, writing — original draft; GJM: experimental design, writing — revision; FLC: conceptualization, experimental design, writing — revision and editing, project administration, funding acquisition, supervision.

Corresponding author

Correspondence to Bruna Laís Merlin.

Ethics declarations

Ethics Approval

The article does not contain any human and animal rights.

Consent to Participate/Publish

All authors agreed with their authorship, the final version of the manuscript, and with its publication.

Conflict of Interest

The authors declare no competing interests.

Sequence Data

The raw reads obtained by Illumina MiSeq sequencing were deposited in the Sequence Read Archive (SRA) at the National Center for Biotechnology Information under the accession number PRJNA784594.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 759 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merlin, B.L., Moraes, G.J. & Cônsoli, F.L. The Microbiota of a Mite Prey-Predator System on Different Host Plants Are Characterized by Dysbiosis and Potential Functional Redundancy. Microb Ecol 85, 1590–1607 (2023). https://doi.org/10.1007/s00248-022-02032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02032-6

Keywords

Navigation