Skip to main content
Log in

Complex symbiotic systems of two treehopper species: Centrotus cornutus (Linnaeus, 1758) and Gargara genistae (Fabricius, 1775) (Hemiptera: Cicadomorpha: Membracoidea: Membracidae)

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The aim of the conducted study was to describe the symbiotic systems (the types of symbionts, distribution in the body of the host insect, the transovarial transmission between generations) of two treehoppers: Centrotus cornutus and Gargara genistae by means of microscopic and molecular techniques. We found that each of them is host to four species of bacteriome-inhabiting symbionts. In C. cornutus, ancestral bacterial symbionts Sulcia and Nasuia are accompanied by an additional symbiont—the bacterium Arsenophonus. In the bacteriomes of G. genistae, apart from Sulcia and Nasuia, bacterium Serratia is present. To our knowledge, this is the first report regarding the occurrence of Serratia as a symbiont in Hemiptera: Auchenorrhyncha. Bacteria Sulcia and Nasuia are harbored in their own bacteriocytes, whereas Arsenophonus and Serratia both inhabit their own bacteriocytes and also co-reside with bacteria Nasuia. We observed that both bacteria Arsenophonus and Serratia undergo autophagic degradation. We found that in both of the species examined, in the cytoplasm and nuclei of all of the cells of the bacteriome, bacteria Rickettsia are present. Our histological and ultrastructural observations revealed that all the bacteriome-associated symbionts of C. cornutus and G. genistae are transovarially transmitted from mother to offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635

  • Arneodo JD, Bressan A, Lherminier J, Michel J, Boudon-Padieu E (2008) Ultrastructural detection of an unusual intranuclear bacterium in Pentastiridius leporinus (Hemiptera: Cixiidae). J Invertebr Pathol 97:310–313

    Article  CAS  PubMed  Google Scholar 

  • Bennett GM, Moran NA (2013) Small, smaller, smallest: the origin and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol 5:1675–1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bennett GM, Abbà S, Kube M, Marzachì C (2016) Complete genome sequences of the obligate symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from the pestiferous leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announc 4:e01604–e01615

    Article  PubMed  PubMed Central  Google Scholar 

  • Biliński S (1998) Introductory remarks. Folia Histochem Cytobiol 3:143–145

    Google Scholar 

  • Brentassi ME, Franco E, Balatti P, Medina R, Bernabei F, Marino De Remes Lenicov AM (2017) Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure and transovarial transmission. Protoplasma 254:1421–1429

    Article  CAS  PubMed  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York

    Google Scholar 

  • Büning J (1994) The ovary of Ectognatha, the insects s. str. In: Büning J (ed) The insect ovary: ultrastructure, previtellogenic growth and evolution. Chapman and Hall, London, pp 31–305

    Chapter  Google Scholar 

  • Burke GR, Normark BB, Favret C, Moran NA (2009) Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol 75:5328–5335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coenye T, Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228:45–49

    Article  CAS  PubMed  Google Scholar 

  • Darby AC, Choi JH, Wilkes T, Hughes MA, Werren JH, Hurst GDD, Colbourne JK (2010) Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Mol Biol 19:75–89

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Valero LM, Soriano-Navarro V, Perez-Brocal A, Heddi A, Moya JM, Garcia-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186:6626–6633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb Y, Ghanim M, Gueguen M, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E (2008) Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J 22:2591–2599

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BIOEDIT: an user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hall AA, Morrow JL, Fromont C, Steinbauer MJ, Taylor GS, Johnson SN, Cook JM, Riegler M (2016) Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol 18:2591–2603

    Article  CAS  PubMed  Google Scholar 

  • He H, Chen Y, Zhang Y, Wei C (2011) Bacteria associated with gut lumen of Camponotus japonicus Mayr. Environ Microbiol 40:1405–1409

    CAS  Google Scholar 

  • Jousselin E, Coeur d’Acier A, Vanlerberghe-Masutti F, Duron O (2013) Evolution and diversity of Arsenophonus endosymbionts in aphids. Mol Ecol 22:260–270

    Article  PubMed  Google Scholar 

  • Kobiałka M, Michalik A, Walczak M, Junkiert Ł, Szklarzewicz T (2015) Symbiotic microorganisms of the leafhopper Deltocephalus pulicaris (Fallén, 1806) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae): molecular characterization, ultrastructure and transovarial transmission. Pol J Entomol 84:155–162

    Article  Google Scholar 

  • Kobiałka M, Michalik A, Walczak M, Junkiert Ł, Szklarzewicz T (2016) Sulcia symbiont of the leafhopper Macrosteles laevis (Ribaut, 1927) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbors Arsenophonus bacteria. Protoplasma 253:903–912

    Article  PubMed  Google Scholar 

  • Kobiałka M, Michalik A, Szwedo J, Szklarzewicz T (2018a) Diversity of symbiotic microbiota in Deltocephalinae leafhoppers (Insecta, Hemiptera, Cicadellidae). Arthropod Struct Dev 47:268–278

    Article  PubMed  Google Scholar 

  • Kobiałka M, Michalik A, Walczak M, Szklarzewicz T (2018b) Dual ‘bacterial-fungal’ symbiosis in Deltocephalinae leafhoppers (Insecta, Hemiptera, Cicadomorpha: Cicadellidae). Microb Ecol 75:771–782

    Article  PubMed  Google Scholar 

  • Kobiałka M, Michalik A, Szklarzewicz T (2018c) An unusual symbiotic system in Elymana kozhevnikovi (Zachvatkin, 1938) and E. sulphurella (Zetterstedt, 1828) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae). Folia Biol (Kraków). https://doi.org/10.3409/fb_66-1.02

  • Koga R, Moran NA (2014) Swapping symbionts in spittlebugs: evolutionary replacement of a reduced genome symbiont. ISME J 8:1237–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga R, Bennett GM, Cryan JR, Moran NA (2013) Evolutionary replacement of symbionts in an ancient and diverse insect lineage. Environ Microbiol 15:2073–2081

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamelas A, Pérez-Brocal V, Gómez-Valero L, Gosalbes MJ, Moya A, Latorre A (2008) Evolution of the secondary symbiont “Candidatus Serratia symbiotica” in aphid species of the subfamily Lachninae. Appl Environ Microbiol 74:4236–4240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamelas A, Gosalbes MJ, Moya A, Latorre A (2011a) New clues about the evolutionary history of metabolic losses in bacterial endosymbionts, provided by the genome of Buchnera aphidicola from the aphid Cinara tujafilina. Appl Environ Microbiol 77:4446–4454

  • Lamelas A, Gosalbes MJ, Manzano-Marín A, Peretó J, Moya A, Latorre A (2011b) Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genet 7:e1002357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer DJC, O’Donnell S, Koga R, Russell JA (2017) The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol 26:3808–3825

    Article  PubMed  Google Scholar 

  • Manzano-Marin A, Szabo G, Simon J-C, Horn M, Latorre A (2017) Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids. Environ Microbiol 19:393–408

    Article  CAS  PubMed  Google Scholar 

  • Mao M, Yang X, Poff K, Bennett G (2017) Comparative genomics of the dual-obligate symbionts from the treehopper, Entylia carinata (Hemiptera: Membracidae), provide insight into the origins and evolution of an ancient symbiosis. Genome Biol Evol 9:1803–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci U S A 104:19392–19397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCutcheon JP, Moran NA (2010) Functional convergence in reduced genomes of bacterial symbionts spanning 200 million years of evolution. Genome Biol Evol 2:708–718

    Article  PubMed  PubMed Central  Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA (2009) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci U S A 106:15394–15399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michalik A, Jankowska W, Kot M, Gołas A, Szklarzewicz T (2014) Symbiosis in the green leafhopper, Cicadella viridis (Hemiptera, Cicadellidae). Association in statu nascendi? Arthropod Struct Dev 43:579–587

    Article  PubMed  Google Scholar 

  • Michalik A, Szwedo J, Stroiński A, Świerczewski D, Szklarzewicz T (2018a) Symbiotic cornucopia of the monophagous planthopper Ommatidiotus dissimilis (Fallén, 1806) (Hemiptera: Fulgoromorpha: Caliscelidae). Protoplasma 255:1317–1329

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalik A, Schulz F, Michalik K, Wascher F, Horn M, Szklarzewicz T (2018b) Coexistence of novel gammaproteobacterial and Arsenophonus symbionts in the scale insect Greenisca brachypodii (Hemiptera, Coccomorpha: Eriococcidae). Environ Microbiol 20:1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Dale C, Dunbar H, Smith WA, Ochman H (2003) Intracellular symbionts of sharpshooters (Insecta, Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ Microbiol 5:116–126

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Tran P, Gerardo NM (2005a) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Russell JA, Koga R, Fukatsu T (2005b) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouton L, Thierry M, Henri H, Baudin R, Gnankine O, Reynaud B, Zchori-Fein E, Becker N, Fleury F, Delatte H (2012) Evidence of diversity and recombination in Arsenophonus symbionts of the Bemisia tabaci species complex. BMC Microbiol 12:S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishino T, Tanahashi M, Lin CP, Koga R, Fukatsu T (2016) Fungal and bacterial endosymbionts of eared leafhoppers of the subfamily Ledrinae (Hemiptera: Cicadellidae). Appl Entomol Zool 51:465–477

    Article  Google Scholar 

  • Noda H, Nakashima N, Koizumi M (1995) Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochem Mol Biol 25:639–646

    Article  CAS  PubMed  Google Scholar 

  • Noda H, Watanabe K, Kawai S, Yukuhiro F, Miyoshi T, Tomizawa M, Koizumi Y, Nikoh N, Fukatsu T (2012) Bacteriome-associated endosymbionts of the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Appl Entomol Zool 47:217–225

    Article  CAS  Google Scholar 

  • Nováková E, Hypša V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Nováková E, Husnik F, Sochova E, Hypša V (2015) Arsenophonus and Sodalis symbionts in louse flies: an analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol 81:6189–6199

  • Ponce-de-Leon M, Tamarit D, Calle-Espinosa J, Mori M, Latorre A, Montero F, Pereto J (2017) Determinism and contingency shape metabolic complementation in an endosymbiotic consortium. Front Microbiol 8:2290

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2009) FigTree v1. 4.0: tree figure drawing tool. Available: http://tree.bio.ed.ac.uk/software/figtree/.

  • Rau A (1943) Symbiose und Symbiontenerwerb bei den Membraciden (Homoptera-Cicadina). Z Morphol Ökol Tiere 39:369–522

    Article  Google Scholar 

  • Ronquist F, Teslenko M, Van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MRBAYES 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabri A, Leroy P, Haubruge E, Hance T, Frere I, Destain J, Thonart P (2010) Isolation, pure culture and characterization of Serratia symbiotica sp nov, the R-type of secondary endosymbiont of the black bean aphid Aphis fabae. Int J Syst Evol Microbiol 61:2081–2088

  • Santos-Garcia D, Juravel K, Freilich S, Zchori-Fein E, Latorre A, Moya A, Morin S, Silva FJ (2018) To B or not to B: comparative genomics suggests Arsenophonus as a source of B vitamins in whiteflies. Front Microbiol 9:2254

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki-Fukatsu K, Koga R, Nikoh N, Yoshizawa K, Kasai S, Mihara M, Kobayashi M, Tomita T, Fukatsu T (2006) Symbiotic bacteria associated with stomach discs of human lice. Appl Environ Microbiol 72:7349–7352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scrascia M, Pazzani C, D’Addabbo P, Oliva M, Roberto R, Russo V, Porcelli F (2016) Does Unaspis euonymi (Comstock) (Hemiptera: Diaspididae) host Serratia symbiotica Moran (Bacteria: Enterobacteriaceae)? Entomol 47:29–34

    Google Scholar 

  • Sirviö A, Pamilo P (2010) Multiple endosymbionts in populations of the ant Formica cinerea. BMC Evol Biol 10:335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szklarzewicz T, Michalik A (2017) Transovarial transmission of symbionts in insects. In: Kloc M (ed) Res Probl Cell Differ 63: Oocytes. Maternal information and functions. Springer, Cham, pp 43–67

  • Szklarzewicz T, Grzywacz B, Szwedo J, Michalik A (2016) Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae). Protoplasma 253:379–391

    Article  PubMed  Google Scholar 

  • Takiya DM, Tran P, Dietrich CH, Moran NA (2006) Co-cladogenesis spanning three phyla: leafhoppers (Insecta: Hemiptera: Cicadellidae) and their dual bacterial symbionts. Mol Ecol 15:4175–4191

    Article  CAS  PubMed  Google Scholar 

  • Thao ML, Baumann P (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol 48:140–144

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban J, Cryan J (2012) Two ancient bacterial endosymbionts have coevolved with the planthoppers (Insecta: Hemiptera: Fulgoroidea). BMC Evol Biol 12:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Vigneron A, Masson F, Vallier A, Balmand S, Rey M, Vincent-Monegat E (2014) Insects recycle endosymbionts when the benefit is over. Curr Biol 6:2267–2273

    Article  CAS  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412:433–435

    Article  Google Scholar 

  • von Dohlen CD, Spaulding U, Shields K, Havill NP, Rosa C, Hoover K (2013) Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (Adelges tsugae) (Hemiptera: Adelgidae) from its native and introduced range. Environ Microbiol 15:2043–2062

    Article  CAS  Google Scholar 

  • Voronin D, Cook DAN, Steven A, Taylor MJ (2012) Autophagy regulates Wolbachia populations across diverse symbiotic associations. Proc Natl Acad Sci U S A 199:9684–9685

    Google Scholar 

  • Wilkes TE, Duron O, Darby AC, Hypša V, Nováková E, Hurst GDD (2011) The genus Arsenophonus. In: Zchori-Fein E, Bourtzis K (eds) Manipulative tenants: bacteria associated with arthropods. CRC Press, Danvers MA, USA, pp 225–244

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H (2006) Metabolic complementarity and genomics of the dual symbiosis of sharpshooters. PLoS Biol 4:e188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to MSc. Ada Jankowska for her skilled technical assistance. The ultrastructural observations were carried out using the Jeol JEM 2100 transmission electron microscope in the Laboratory of Microscopy, Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University.

Funding

This work was supported by funds from research grants K/ZDS/008068 and N18/DBS/000013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Szklarzewicz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Margit Pavelka

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Kobiałka et al.: Symbiotic systems of treehoppers

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobiałka, M., Michalik, A., Świerczewski, D. et al. Complex symbiotic systems of two treehopper species: Centrotus cornutus (Linnaeus, 1758) and Gargara genistae (Fabricius, 1775) (Hemiptera: Cicadomorpha: Membracoidea: Membracidae). Protoplasma 257, 819–831 (2020). https://doi.org/10.1007/s00709-019-01466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01466-z

Keywords

Navigation