Skip to main content

Advertisement

Log in

Fungal Community Shift Along Steep Environmental Gradients from Geothermal Soils in Yellowstone National Park

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Geothermal soils offer unique insight into the way extreme environmental factors shape communities of organisms. However, little is known about the fungi growing in these environments and in particular how localized steep abiotic gradients affect fungal diversity. We used metabarcoding to characterize soil fungi surrounding a hot spring-fed thermal creek with water up to 84 °C and pH 10 in Yellowstone National Park. We found a significant association between fungal communities and soil variable principal components, and we identify the key trends in co-varying soil variables that explain the variation in fungal community. Saprotrophic and ectomycorrhizal fungi community profiles followed, and were significantly associated with, different soil variable principal components, highlighting potential differences in the factors that structure these different fungal trophic guilds. In addition, in vitro growth experiments in four target fungal species revealed a wide range of tolerances to pH levels but not to heat. Overall, our results documenting turnover in fungal species within a few hundred meters suggest many co-varying environmental factors structure the diverse fungal communities found in the soils of Yellowstone National Park.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All sequences are in GenBank and will be made public after publication: MW471687—MW472279.

Code Availability

Code for analyses is available at: https://github.com/abazzical/YellowstoneFungi.

References

  1. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science 346:1256688

    Article  Google Scholar 

  2. Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14:434–447. https://doi.org/10.1038/nrmicro.2016.59

    Article  CAS  PubMed  Google Scholar 

  3. Amenábar M, Urschel M, Boyd E (2015) Metabolic and taxonomic diversification in continental magmatic hydrothermal systems. In: Bakermans C (ed) Microbial evolution under extreme conditions. De Gruyter, Berlin, Boston, pp 57–96

    Chapter  Google Scholar 

  4. Brock TD, Freeze H (1969) Thermusaquaticus gen. n. and sp. n., a Nonsporulating Extreme Thermophile. J Bacteriol 98:289

    Article  CAS  Google Scholar 

  5. Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227. https://doi.org/10.1111/j.1472-4669.2005.00052.x

    Article  Google Scholar 

  6. Colman DR, Jay ZJ, Inskeep WP, Jennings Rd, Maas KR, Rusch DB, Takacs-Vesbach CD (2016) Novel, Deep-Branching Heterotrophic Bacterial Populations Recovered from Thermal Spring Metagenomes 7. https://doi.org/10.3389/fmicb.2016.00304

  7. Colman DR, Lindsay MR, Boyd ES (2019) Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun 10:681. https://doi.org/10.1038/s41467-019-08499-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown SR, Fritz SC (2019) Eukaryotic organisms of continental hydrothermal systems. Extremophiles 23:367–376. https://doi.org/10.1007/s00792-019-01101-y

    Article  PubMed  Google Scholar 

  9. Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci 69:2426. https://doi.org/10.1073/pnas.69.9.2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan M-C, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116:489–502. https://doi.org/10.1016/j.funbio.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  11. Hutchinson MI, Powell AJ, Herrera J, Natvig DO (2019) New perspectives on the distribution and roles of thermophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer International Publishing, Cham, pp 59–80

    Chapter  Google Scholar 

  12. Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson MI, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycologia 104:813–825. https://doi.org/10.3852/11-298

    Article  PubMed  Google Scholar 

  13. Aguilera A, González-Toril E (2019) Eukaryotic life in extreme environments: acidophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer International Publishing, Cham, pp 21–38

    Chapter  Google Scholar 

  14. Cullings K, Makhija S (2001) Ectomycorrhizal fungal associates of Pinus contorta in soils associated with a hot spring in Norris Geyser Basin, Yellowstone National Park, Wyoming. Appl Environ Microbiol 67:5538–5543

    Article  CAS  Google Scholar 

  15. Hung L-L, Trappe JM (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75:234–241. https://doi.org/10.1080/00275514.1983.12021660

    Article  Google Scholar 

  16. Wheeler KA, Hurdman BF, Pitt JI (1991) Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. Int J Food Microbiol 12:141–149. https://doi.org/10.1016/0168-1605(91)90063-U

    Article  CAS  PubMed  Google Scholar 

  17. Nevarez L, Vasseur V, Le Madec A, Le Bras MA, Coroller L, Leguérinel I, Barbier G (2009) Physiological traits of Penicilliumglabrum strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water. Int J Food Microbiol 130:166–171. https://doi.org/10.1016/j.ijfoodmicro.2009.01.013

    Article  CAS  PubMed  Google Scholar 

  18. Zhang T, Wang N-F, Liu H-Y, Zhang Y-Q, Yu L-Y (2016) Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund Region, Svalbard (High Arctic). Frontiers in Microbiology 7. https://doi.org/10.3389/fmicb.2016.00227

  19. Redman RS, Litvintseva A, Sheehan KB, Henson JM, Rodriguez RJ (1999) Fungi from geothermal soils in Yellowstone National Park. Appl Environ Microbiol 65:5193. https://doi.org/10.1128/AEM.65.12.5193-5197.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Appoloni S, Lekberg Y, Tercek MT, Zabinski CA, Redecker D (2008) Molecular Community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA). Microb Ecol 56:649–659

    Article  Google Scholar 

  21. Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92:1292–1302. https://doi.org/10.1890/10-1516.1

    Article  PubMed  Google Scholar 

  22. Meadow JF, Zabinski CA (2012) Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA. FEMS Microbiol Ecol 82:182–191. https://doi.org/10.1111/j.1574-6941.2012.01416.x%JFEMSMicrobiologyEcology

    Article  CAS  PubMed  Google Scholar 

  23. Das S, Roy G, Najar IN, Sherpa MT, Thakur N (2021) Diversity and composition of the North Sikkim hot spring mycobiome using a culture-independent method. Folia Microbiol 66:457–468. https://doi.org/10.1007/s12223-021-00859-z

    Article  CAS  Google Scholar 

  24. Stout RG, Al-Niemi TS (2002) Heat-tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park. Ann Bot 90:259–267. https://doi.org/10.1093/aob/mcf174%JAnnalsofBotany

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bazzicalupo AL, Bálint M, Schmitt I (2013) Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecol 6:102–109

    Article  Google Scholar 

  26. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  27. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., New York, pp 315–322

    Google Scholar 

  28. Nguyen NH, Smith D, Peay K, Kennedy P (2015) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205:1389–1393. https://doi.org/10.1111/nph.12923

    Article  CAS  PubMed  Google Scholar 

  29. Palmer JM, Jusino MA, Banik MT, Lindner DL (2018) Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6:e4925. https://doi.org/10.7717/peerj.4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen N (2020) Amplicon analysis pipeline with QIIME2: https://github.com/nnguyenlab/amplicon-pipeline. Accessed March 2021

  32. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T (2010) The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol 186:281–285

    Article  Google Scholar 

  34. Kõljalg U (2020) UNITE general FASTA release for Fungi. In: community, U (ed.), https://doi.org/10.15156/BIO/786368

  35. De Caceres M, Jansen F, De Caceres MJRp, Version (2016) Indicspecies: relationship between species and groups of sites1: 2014

  36. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2018) Community ecology package. R package version, pp 2–5

  38. van den Boogaart KG, Tolosana-Delgado R (2008) “compositions”: a unified R package to analyze compositional data. Comput Geosci 34:320–338. https://doi.org/10.1016/j.cageo.2006.11.017

    Article  Google Scholar 

  39. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  40. Marx DH (1970) The influence of ectotrophic mycorrhizal fungi on the resistance of Pine roots to pathogenic infections. V. Resistance of mycorrhizae to infection by vegetative mycelium of Phytophthora cinnamomi. Phytopathology 60:1472–1473. https://doi.org/10.1094/Phyto-60-1472

    Article  Google Scholar 

  41. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ Biophotonics international 11:36–42

    Google Scholar 

  42. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  43. Mouchacca J (2007) Heat tolerant fungi and applied research: Addition to the previously treated group of strictly thermotolerant species. World J Microbiol Biotechnol 23:1755. https://doi.org/10.1007/s11274-007-9426-3

    Article  PubMed  Google Scholar 

  44. Zalar P, Novak M, de Hoog GS, Gunde-Cimerman N (2011) Dishwashers – a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol 115:997–1007. https://doi.org/10.1016/j.funbio.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  45. Gümral R, Özhak-baysan B, Tümgör A, Saraçli MA, Yildiran ST, Ilkit M, Zupancic J, Novak-babic M, Gunde-cimerman N, Zalar P, de Hoog GS (2016) Dishwashers provide a selective extreme environment for human-opportunistic yeast-like fungi. Fungal Diversity 76:1–9. https://doi.org/10.1007/s13225-015-0327-8

    Article  Google Scholar 

  46. de la Cerda KA, Douhan GW, Wong FP (2007) Discovery and characterization of Waiteacircinata var. circinata affecting annual bluegrass from the Western United States. Plant Dis 91:791–797. https://doi.org/10.1094/PDIS-91-7-0791

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y-N, Liu X-Y, Zheng R-Y (2014) Umbelopsis changbaiensis sp. nov. from China and the typification of Mortierellavinacea. Mycol Prog 13:657–669. https://doi.org/10.1007/s11557-013-0948-9

    Article  Google Scholar 

  48. Henderson L, Ly M-A, Robinson K, Gleason FH, Lilje O (2018) Maximum temperature for growth and reproduction is similar in two soil isolates of Gaertneriomycessemiglobifer (Spizellomycetales, Chytridiomycetes) from different soil environments in north eastern New South Wales, Australia. Nova Hedwigia 106:485–497. https://doi.org/10.1127/nova_hedwigia/2017/0448

    Article  Google Scholar 

  49. Houbraken J, Spierenburg H, Frisvad JC (2012) Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie Van Leeuwenhoek 101:403–421. https://doi.org/10.1007/s10482-011-9647-1

    Article  CAS  PubMed  Google Scholar 

  50. Selbmann L, Zucconi L, Isola D, Onofri S (2015) Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet 61:335–345. https://doi.org/10.1007/s00294-014-0457-7

    Article  CAS  PubMed  Google Scholar 

  51. Hirose D, Hobara S, Matsuoka S, Kato K, Tanabe Y, Uchida M, Kudoh S, Osono T (2016) Diversity and community assembly of moss-associated fungi in ice-free coastal outcrops of continental Antarctica. Fungal Ecol 24:94–101. https://doi.org/10.1016/j.funeco.2016.09.005

    Article  Google Scholar 

  52. Řezanka T, Kolouchová I, Sigler K (2016) Lipidomic analysis of psychrophilic yeasts cultivated at different temperatures. Biochim Biophys Acta 1861:1634–1642. https://doi.org/10.1016/j.bbalip.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  53. Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold-adapted yeasts from Antarctica and the Italian Alps—description of three novel species: Mrakiarobertii sp. nov., Mrakiablollopis sp. nov. and Mrakiellaniccombsii sp. nov. Extremophiles 14:47–59. https://doi.org/10.1007/s00792-009-0286-7

    Article  CAS  PubMed  Google Scholar 

  54. Vishniac HS (1999) Psychrophilic Yeasts. In: Seckbach J (ed) Enigmatic Microorganisms and Life in Extreme Environments. Springer, Netherlands, Dordrecht, pp 315–321

    Chapter  Google Scholar 

  55. Białkowska AM, Szulczewska KM, Krysiak J, Florczak T, Gromek E, Kassassir H, Kur J, Turkiewicz M (2017) Genetic and biochemical characterization of yeasts isolated from Antarctic soil samples. Polar Biol 40:1787–1803. https://doi.org/10.1007/s00300-017-2102-7

    Article  Google Scholar 

  56. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao H-L, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci 111:6341. https://doi.org/10.1073/pnas.1402584111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cavello I, Albanesi A, Fratebianchi D, Garmedia G, Vero S, Cavalitto S (2017) Pectinolytic yeasts from cold environments: novel findings of Guehomycespullulans, Cystofilobasidiuminfirmominiatum and Cryptococcus adeliensis producing pectinases. Extremophiles 21:319–329. https://doi.org/10.1007/s00792-016-0904-0

    Article  CAS  PubMed  Google Scholar 

  58. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, de Vries M, Verkleij GJM, Crous PW, Boekhout T, Robert V (2016) DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 85:91–105. https://doi.org/10.1016/j.simyco.2016.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Steidinger BS, Bhatnagar JM, Vilgalys R, Taylor JW, Qin C, Zhu K, Bruns TD, Peay KG (2020) Ectomycorrhizal fungal diversity predicted to substantially decline due to climate changes in North American Pinaceae forests. J Biogeogr 47:772–782. https://doi.org/10.1111/jbi.13802

    Article  Google Scholar 

  60. Tsuji M, Kudoh S (2020) Soil yeasts in the vicinity of Syowa Station, East Antarctica: their diversity and extracellular enzymes, cold adaptation strategies, and secondary metabolites. Sustainability 12. https://doi.org/10.3390/su12114518

  61. Sharp CE, Brady AL, Sharp GH, Grasby SE, Stott MB, Dunfield PF (2014) Humboldt’s spa: microbial diversity is controlled by temperature in geothermal environments. ISME J 8:1166–1174. https://doi.org/10.1038/ismej.2013.237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. de Oliveira TB, Rodrigues A (2019) Ecology of thermophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer International Publishing, Cham, pp 39–57

    Chapter  Google Scholar 

  63. Zhou W-N, White JF, Soares MA, Torres MS, Zhou Z-P, Li H-Y (2015) Diversity of fungi associated with plants growing in geothermal ecosystems and evaluation of their capacities to enhance thermotolerance of host plants. J Plant Interact 10:305–314. https://doi.org/10.1080/17429145.2015.1101495

    Article  Google Scholar 

  64. Inskeep W, Jay Z, Tringe S, Herrgard M, Rusch D (2013) The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone Geothermal Ecosystem4. https://doi.org/10.3389/fmicb.2013.00067

  65. Yamazaki A, Toyama K, Nakagiri A (2010) A new acidophilic fungus Teratosphaeriaacidotherma (Capnodiales, Ascomycota) from a hot spring. Mycoscience 51:443–455. https://doi.org/10.1007/s10267-010-0059-2

    Article  Google Scholar 

  66. Orwa P, Mugambi G, Wekesa V, Mwirichia R (2020) Isolation of haloalkaliphilic fungi from Lake Magadi in Kenya. Heliyon 6:e02823. https://doi.org/10.1016/j.heliyon.2019.e02823

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351. https://doi.org/10.1038/ismej.2010.58

    Article  PubMed  Google Scholar 

  68. Ishida TA, Nara K, Ma S, Takano T, Liu S (2009) Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza 19:329–335. https://doi.org/10.1007/s00572-008-0219-9

    Article  PubMed  Google Scholar 

  69. Grum-Grzhimaylo AA, Georgieva ML, Debets AJM, Bilanenko EN (2013) Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin? IMA Fungus 4:213–228. https://doi.org/10.5598/imafungus.2013.04.02.07

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sato H, Tsujino R, Kurita K, Yokoyama K, Agata K (2012) Modelling the global distribution of fungal species: new insights into microbial cosmopolitanism. Mol Ecol 21:5599–5612

    Article  Google Scholar 

  71. Bazzicalupo AL, Whitton J, Berbee ML (2019) Over the hills, but how far away? Estimates of mushroom geographic range extents. J Biogeogr 46:1547–1557. https://doi.org/10.1111/jbi.13617

    Article  Google Scholar 

Download references

Acknowledgements

We thank Maddie Trent, Rio Wofford, Colin Kennedy, Seamus Hoolahan, and Kathryn Gannon for assistance in the field and laboratory, and the Quandt lab for suggestions on earlier versions of the manuscript. Cathy Zabinski helped obtaining the collecting permit, Dan Colman assisted with sampling design, and Kabir Peay provided raw data from another study that allowed fungal community comparisons. In addition, we thank three anonymous reviewers for crucial input on previous versions of this study. We also thank Yellowstone National Park for allowing the collection of samples in Rabbit Creek (YELL-2018-SCI8062).

Author information

Authors and Affiliations

Authors

Contributions

ALB analyzed data, produced the figures, and wrote the manuscript; SE produced the data in the wet lab and advised on analyses; MB, MR, and LR collected field samples and produced in vitro culture data; NN consulted on the manuscript; SB designed the study, collected samples, analyzed data, and wrote the manuscript. All authors edited the final version of the manuscript. All authors have approved this draft of the paper.

Corresponding author

Correspondence to Anna L. Bazzicalupo.

Ethics declarations

Ethics Approval, Consent to Participate, and Consent for Publication

The research did not require ethical approval; no consent to participate or publication was needed.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzicalupo, A.L., Erlandson, S., Branine, M. et al. Fungal Community Shift Along Steep Environmental Gradients from Geothermal Soils in Yellowstone National Park. Microb Ecol 84, 33–43 (2022). https://doi.org/10.1007/s00248-021-01848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01848-y

Keywords

Navigation