Skip to main content

New Perspectives on the Distribution and Roles of Thermophilic Fungi

  • Chapter
  • First Online:
Fungi in Extreme Environments: Ecological Role and Biotechnological Significance

Abstract

Defined as fungi that grow better at 25 °C than at 45 °C, thermophilic fungi were discovered more than a century ago. Nevertheless, little is known about the natural roles and distribution of these organisms. Although common in “sun-heated soils” and other natural substrates they have most often been recovered from manmade composts, and one hypothesis suggests that they evolved as decomposers in natural compost. This hypothesis suggests that propagules found outside compost have been dispersed by wind, an idea that seems nearly impossible to reconcile with their high frequency and broad distribution. In this chapter we briefly review the biology, history, and evolution of thermophilic fungi. We also present new results from ongoing efforts to map the range of habitats from which thermophilic fungi can be obtained. We have isolated thermophilic fungi over small and large spatial scales. Our surveys have focused on soil, litter, and herbivore droppings sampled from diverse ecosystems (deserts, grasslands, and forests) across eight western states, Mexico and Canada—from southern deserts to alpine ecosystems in Colorado and Montana. Our results show that thermophiles can be isolated readily from all of these substrates at nearly every latitude and elevation. We observed that the success of recovering thermophilic fungi from soil decreases with increasing latitude. During this survey, we also discovered that several species of thermophilic fungi can survive storage in soil samples for several years at −80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Alhamed MF, Shebany YM (2012) Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance. Plant Biol 14:859–863

    Article  CAS  Google Scholar 

  • Allen PJ, Emerson R (1949) Guayule rubber: microbiological improvement by shrub retting. Ind Eng Chem 41:346–365

    Article  CAS  Google Scholar 

  • Ames LM (1963) A monograph of the Chaetomiaceae. US Army Res Dev Ser No. 2, Washington, DC, pp 9–125

    Google Scholar 

  • Andrey DO, Kaiser L, Emonet S, Erard V, Chalandon Y, Van Delden C (2017) Cerebral rhizomucor infection treated by posaconazole delayed-release tablets in an allogeneic stem cell transplant recipient. Int J Infect Dis 55:24–26

    Article  Google Scholar 

  • Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394

    Article  CAS  Google Scholar 

  • Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, Ishmael N, John T, Darmond C, Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J, Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE, van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE, Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW, Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–929

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Bustamante J (2006) Thermophilic fungi on the Sevilleta National Wildlife Refuge. PhD diss., University of New Mexico

    Google Scholar 

  • Cooney DG, Emerson R (1964) Thermophilic fungi: an account of their biology, activities and classification. W.H. Freeman, San Francisco, CA, p 188

    Google Scholar 

  • Deacon LJ, Pryce-Miller EJ, Frankland JC, Bainbridge BW, Moore PD, Robinson CH (2006) Diversity and function of decomposer fungi from a grassland soil. Soil Biol Biochem 38:7–20

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996

    Article  CAS  Google Scholar 

  • Eichorst SA, Kuske CR (2012) Cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils identified using stable isotope probing. Appl Environ Microbiol 78:2316–2327

    Article  CAS  Google Scholar 

  • Fergus CL (1971) The temperature relationships and thermal resistance of a new thermophilic Papulaspora from mushroom compost. Mycologia 63:426–431

    Article  Google Scholar 

  • Fergus CL, Sinden JW (1969) A new thermophilic fungus from mushroom compost: Thielavia thermophila spec. nov. Can J Bot 47:1635–1637

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  Google Scholar 

  • Hawksworth D, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5:1–17

    Google Scholar 

  • Hedger JN, Hudson HJ (1974) Nutritional studies of Thermomyces lanuginosus from wheat straw compost. Trans Br Mycol Soc 62:129–143

    Article  Google Scholar 

  • Herrera J, Khidir HH, Eudy DM, Porras-Alfaro A, Natvig DO, Sinsabaugh RL (2010) Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia 102:1012–1026

    Article  Google Scholar 

  • Hirose D, Degawa Y, Inaba S, Tokumasu S (2012) The anamorphic genus Calcarisporiella is a new member of the Mucoromycotina. Mycoscience 53:256–260

    Article  Google Scholar 

  • Hoffmann K, Pawłowska J, Walther G, Wrzosek M, De Hoog GS, Benny GL, Kirk PM, Voigt K (2013) The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 30:57–76

    Article  CAS  Google Scholar 

  • Houbraken J, Spierenburg H, Frisvad JC (2012) Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. A Van Leeuw J Microb 101:403c421

    Article  Google Scholar 

  • Houbraken J, de Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249

    Article  Google Scholar 

  • Houbraken J, Samson RA, Yilmaz N (2016) Taxonomy of Aspergillus, Penicillium and Talaromyces and its significance for biotechnology.Aspergillus and Penicillium in the Post-Genomic Era. Caister Academic Press, Norfolk, pp 1–15

    Book  Google Scholar 

  • Hutchinson MI, Powell AJ, Tsang A, O’Toole N, Berka RM, Barry K, Grigoriev IV, Natvig DO (2016) Genetics of mating in members of the Chaetomiaceae as revealed by experimental and genomic characterization of reproduction in Myceliophthora heterothallica. Fungal Genet Biol 86:9–19

    Article  CAS  Google Scholar 

  • Kane BE, Mullins JT (1973) Thermophilic fungi in a municipal waste compost system. Mycologia 65:1087–1100

    Article  CAS  Google Scholar 

  • Kerekes J, Kaspari M, Stevenson B, Nilsson RH, Hartmann M, Amend A, Bruns TD (2013) Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest. Mol Ecol 22:2827–2838

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Koukol O (2016) Myriococcum revisited: a revision of an overlooked fungal genus. Plant Syst Evol 302:957–969

    Article  Google Scholar 

  • Langarica-Fuentes A, Zafar U, Heyworth A, Brown T, Fox G, Robson GD (2014) Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiol Ecol 88:296–308

    Article  CAS  Google Scholar 

  • Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278

    Article  CAS  Google Scholar 

  • Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res 43:580–W584

    Article  Google Scholar 

  • Lindt W (1886) Mitteilungen über einige neue pathogene Shimmelpilze. Arch Exp Pathol Pharmakol 21:269–298

    Article  Google Scholar 

  • López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. 2011; Version 2.75. http://mesquiteproject.org

  • Maheshwari R, Kamalam PT, Balasubramanyam PV (1987) The biogeography of thermophilic fungi. Curr Sci 56:151–155

    Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  Google Scholar 

  • Massimo NC, Devan MN, Arendt KR, Wilch MH, Riddle JM, Furr SH, Steen C, U’Ren JM, Sandberg DC, Arnold AE (2015) Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb Ecol 70:61–76

    Article  CAS  Google Scholar 

  • Mehrotra RS, Aneja KR (1990) An introduction to mycology. New Age International, New Delhi, pp 1–737

    Google Scholar 

  • Miehe H (1907a) Die selbsterhitzung des Heus. Eine biologische studie. Gustav Fischer, Jena, pp 1–127

    Google Scholar 

  • Miehe H (1907b) Thermoidium sulfureum n.g. n.sp., etin neuer Wärmepilz. Berichte der Deutsch Bot Ges 25:510–515

    Google Scholar 

  • Miehe H (1930a) Die Wärmebildung von Reinkulturen im Hinblick auf die ätiologie der Selbsterhitzung pflanzlicher Stoffe. Arch Mikrobiol 1:78–118

    Article  Google Scholar 

  • Miehe H (1930b) Über die Selbsterhitzung des Heues. Arb Dtsch Landwirtsch Gesellsch Berlin 111:76–91

    Google Scholar 

  • Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan M, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116:489–502

    Article  CAS  Google Scholar 

  • Mouchacca J (2000a) Thermotolerant fungi erroneously reported in applied research work as possessing thermophilic attributes. World J Microbiol Biotechnol 16:869–880

    Article  Google Scholar 

  • Mouchacca J (2000b) Thermophilic fungi and applied research: a synopsis of name changes and synonymies. World J Microbiol Biotechnol 16:881–888

    Article  Google Scholar 

  • Moustafa A-WF, Abdel-Azeem AM (2008) Thielavia gigaspora, a new thermotolerant ascomycete from Egypt. Microbiol Res 163:441–444

    Article  Google Scholar 

  • Natvig DO, Taylor JW, Tsang A, Hutchinson MI, Powell AJ (2015) Mycothermus thermophilus gen. et comb. nov., a new home for the itinerant thermophile Scytalidium thermophilum (Torula thermophila). Mycologia 107:319–327

    Article  Google Scholar 

  • Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N, Brayton KA (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8(11):e79512

    Article  Google Scholar 

  • Oliveira TB, Gomes E, Rodrigues A (2015) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19:31–37

    Article  Google Scholar 

  • Pan WZ, Huang XW, Wei KB, Zhang CM, Yang DM, Ding JM, Zhang KG (2010) Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–152

    Article  CAS  Google Scholar 

  • Peixoto-Nogueira SC, Sandrim VC, Guimarães LHS, Jorge JA, Terenzi HF, Polizeli MLTM (2008) Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst Eng 31:329–334

    Article  CAS  Google Scholar 

  • Platt AR, Woodhall RW, George AL Jr (2007) Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. Biotechniques 43:58–62

    Article  CAS  Google Scholar 

  • Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson MI, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycologia 104:813–825

    Article  Google Scholar 

  • Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:1886–1899

    Article  CAS  Google Scholar 

  • Rajasekaran AK, Maheshwari R (1993) Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18:345–354

    Article  Google Scholar 

  • Richardson MJ (2001) Diversity and occurrence of coprophilous fungi. Mycol Res 105:387–402

    Article  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  Google Scholar 

  • Salar RK (2018) Thermophilic fungi: basic concepts and biotechnological applications. CRC Press, Boca Raton, FL, pp 1–334

    Book  Google Scholar 

  • Salar RK, Aneja KR (2007) Thermophilic fungi: taxonomy and biogeography. J Agric Techonol 3:77–107

    Google Scholar 

  • Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, Maiti R, Kodira CD, Neafsey DE, Zeng Q, Hung CY (2009) Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res 19:1722–1731

    Article  CAS  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  Google Scholar 

  • St-Germain G, Robert A, Ishak M, Tremblay C, Claveau S (1993) Infection due to Rhizomucor pusillus: report of four cases in patients with leukemia and review. Clin Infect Dis 16:640–645

    Article  CAS  Google Scholar 

  • Straatsma G, Samson RA, Olijnsma TW, Den Camp HJO, Gerrits JP, Van Griensven LJ (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60:454–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subrahmanyam A (1999) Ecology and distribution. In: Thermophilic moulds in biotechnology. Springer, Dordrecht, pp 13–42

    Chapter  Google Scholar 

  • Tansey MR (1971) Isolation of thermophilic fungi from self-heated, industrial wood chip piles. Mycologia 63:537–547

    Article  Google Scholar 

  • Tansey MR (1973) Isolation of thermophilic fungi from alligator nesting material. Mycologia 65:594–601

    Article  CAS  Google Scholar 

  • Tansey MR (1975) Fungi associated with growing stalagtites. Mycologia 67:171–172

    Article  Google Scholar 

  • Tansey MR (1977) Enrichment, isolation and assay of growth of thermophilic and thermotolerant fungi in lignin-containing media. Mycologia 69:463–476

    Article  CAS  Google Scholar 

  • Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci U S A 69:2426–2428

    Article  CAS  Google Scholar 

  • Tansey MR, Jack MA (1976) Thermophilic fungi in sun-heated soils. Mycologia 68:1061–1075

    Article  CAS  Google Scholar 

  • Taylor JW, Hann-Soden C, Branco S, Sylvain I, Ellison CE (2015) Clonal reproduction in fungi. Proc Natl Acad Sci U S A 112:8901–8908

    Article  CAS  Google Scholar 

  • Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M, Abarenkov K (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159

    Article  Google Scholar 

  • Tiquia SM (2005) Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26(10):1104–1114

    Article  Google Scholar 

  • Tsiklinsky P (1899) Sur les mucédinées thermophiles. Ann Inst Pasteur 13:500–505

    Google Scholar 

  • van den Brink J, Samson RA, Hagen F, Boekhout T, de Vries RP (2012) Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers 52:197–207

    Article  Google Scholar 

  • van den Brink J, van Muiswinkel GCJ, Theelen B, Hinz SWA, de Vries RP (2013) Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol 79:1316–1324

    Google Scholar 

  • von Klopotek A (1976) Thielavia heterothallica spec. nov., die perfekte Form von Chrysosporium thermophilum. Arch Microbiol 107:223–224

    Article  Google Scholar 

  • White TJ, Bruns T, Lee SJ, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18:315–322

    Google Scholar 

  • Winnepenninckx B, Backeljau T, Wachter R (1993) Complete small ribosomal subunit RNA sequence of the chiton (Lischke, 1873) (Mollusca, Polyplacophora). Nucleic Acids Res 21:1670–1670

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by a National Science Foundation award to the University of New Mexico (UNM) for the Sevilleta Long-Term Ecological Research program. We acknowledge support for DNA sequencing from the UNM Department of Biology’s Molecular Biology Facility. Data analysis was aided by computing resources of the UNM Center for Evolutionary & Theoretical Immunology (CETI) under National Institutes of Health grant P30GM110907, and the UNM Center for Advanced Research Computing, supported in part by the National Science Foundation.

Funding statement Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutchinson, M.I., Powell, A.J., Herrera, J., Natvig, D.O. (2019). New Perspectives on the Distribution and Roles of Thermophilic Fungi. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_4

Download citation

Publish with us

Policies and ethics