Skip to main content

Advertisement

Log in

Hawaiian Fungal Amplicon Sequence Variants Reveal Otherwise Hidden Biogeography

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To study biogeography and other ecological patterns of microorganisms, including fungi, scientists have been using operational taxonomic units (OTUs) as representations of species or species hypotheses. However, when defined by 97% sequence similarity cutoff at an accepted barcode locus such as 16S in bacteria or ITS in fungi, these OTUs can obscure biogeographic patterns, mask taxonomic diversity, and hinder meta-analyses. Amplicon sequence variants (ASVs) have been proposed to alleviate all of these issues and have been shown to do so in bacteria. Analyzing ASVs is just emerging as a common practice among fungal studies, and it is unclear whether the benefits found in bacterial studies of using such an approach carryover to fungi. Here, we conducted a meta-analysis of Hawaiian fungi by analyzing ITS1 amplicon sequencing data as ASVs and exploring ecological patterns. These surveys spanned three island groups and five ecosystems combined into the first comprehensive Hawaiian Mycobiome ASV Database. Our results show that ASVs can be used to combine fungal ITS surveys, increase reproducibility, and maintain the broad ecological patterns observed with OTUs, including diversity orderings. Additionally, the ASVs that comprise some of the most common OTUs in our database reveals some island specialists, indicating that traditional OTU clustering can obscure important biogeographic patterns. We recommend that future fungal studies, especially those aimed at assessing biogeography, analyze ASVs rather than OTUs. We conclude that similar to bacterial studies, ASVs improve reproducibility and data sharing for fungal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benlloch S, Martínez-Murcia AJ, Rodríguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581. https://doi.org/10.1016/S0723-2020(11)80418-2

    Article  Google Scholar 

  2. Group JCHMPDGW (2012) Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS One 7:e39315. https://doi.org/10.1371/journal.pone.0039315

    Article  CAS  Google Scholar 

  3. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d'Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans coordinators, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P, Boss E, Bowler C, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sieracki M, Velayoudon D (2015) Structure and function of the global ocean microbiome. Science 348:1261359. https://doi.org/10.1126/science.1261359

    Article  CAS  PubMed  Google Scholar 

  4. Thompson LR, Sanders JG, McDonald D et al (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. https://doi.org/10.1038/nature24621

  5. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova E, Voigt K, Crous PW, Miller AN, Wingfield MJ, Aime MC, An KD, Bai FY, Barreto RW, Begerow D, Bergeron MJ, Blackwell M, Boekhout T, Bogale M, Boonyuen N, Burgaz AR, Buyck B, Cai L, Cai Q, Cardinali G, Chaverri P, Coppins BJ, Crespo A, Cubas P, Cummings C, Damm U, de Beer ZW, de Hoog GS, del-Prado R, Dentinger B, Dieguez-Uribeondo J, Divakar PK, Douglas B, Duenas M, Duong TA, Eberhardt U, Edwards JE, Elshahed MS, Fliegerova K, Furtado M, Garcia MA, Ge ZW, Griffith GW, Griffiths K, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Guo LD, Hagen F, Hambleton S, Hamelin RC, Hansen K, Harrold P, Heller G, Herrera C, Hirayama K, Hirooka Y, Ho HM, Hoffmann K, Hofstetter V, Hognabba F, Hollingsworth PM, Hong SB, Hosaka K, Houbraken J, Hughes K, Huhtinen S, Hyde KD, James T, Johnson EM, Johnson JE, Johnston PR, Jones EBG, Kelly LJ, Kirk PM, Knapp DG, Koljalg U, Kovacs GM, Kurtzman CP, Landvik S, Leavitt SD, Liggenstoffer AS, Liimatainen K, Lombard L, Luangsa-ard JJ, Lumbsch HT, Maganti H, Maharachchikumbura SSN, Martin MP, May TW, McTaggart AR, Methven AS, Meyer W, Moncalvo JM, Mongkolsamrit S, Nagy LG, Nilsson RH, Niskanen T, Nyilasi I, Okada G, Okane I, Olariaga I, Otte J, Papp T, Park D, Petkovits T, Pino-Bodas R, Quaedvlieg W, Raja HA, Redecker D, Rintoul TL, Ruibal C, Sarmiento-Ramirez JM, Schmitt I, Schussler A, Shearer C, Sotome K, Stefani FOP, Stenroos S, Stielow B, Stockinger H, Suetrong S, Suh SO, Sung GH, Suzuki M, Tanaka K, Tedersoo L, Telleria MT, Tretter E, Untereiner WA, Urbina H, Vagvolgyi C, Vialle A, Vu TD, Walther G, Wang QM, Wang Y, Weir BS, Weiss M, White MM, Xu J, Yahr R, Yang ZL, Yurkov A, Zamora JC, Zhang N, Zhuang WY, Schindel D (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849. https://doi.org/10.1099/00207713-44-4-846

    Article  CAS  Google Scholar 

  8. Poretsky R, Rodriguez-R LM, Luo C, Tsementzi D, Konstantinidis KT (2014) Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 9:e93827. https://doi.org/10.1371/journal.pone.0093827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55. https://doi.org/10.1111/j.1096-0031.2003.00008.x

    Article  PubMed  Google Scholar 

  10. Khomich M, Davey ML, Kauserud H, Rasconi S, Andersen T (2017) Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecol 27:36–46. https://doi.org/10.1016/j.funeco.2017.01.008

    Article  Google Scholar 

  11. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci 111:6341–6346. https://doi.org/10.1073/pnas.1402584111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, Camp D, Kingsley L, Leo N, Greenblatt RM, Fong S, Stone S, Dermand JC, Kleerup EC, Huang L, Morris A, Ghedin E (2015) Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med 191:932–942. https://doi.org/10.1164/rccm.201409-1583OC

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Dong S, Gao Q, Liu S, Ganjurjav H, Wang X, Su X, Wu X (2017) Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Sci Rep 7. https://doi.org/10.1038/srep43077

  14. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4:1111–1119. https://doi.org/10.1111/2041-210X.12114

    Article  PubMed Central  Google Scholar 

  16. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838. https://doi.org/10.1038/ismej.2012.160

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt VT, Reveillaud J, Zettler E, Mincer TJ, Murphy L, Amaral-Zettler LA (2014) Oligotyping reveals community level habitat selection within the genus Vibrio. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00563

  18. Glassman SI, Martiny JBH (2018) Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. mSphere 3:e00148–e00118. https://doi.org/10.1128/mSphere.00148-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tapolczai K, Selmeczy GB, Szabó B, B-Béres V, Keck F, Bouchez A, Rimet F, Padisák J (2021) The potential of exact sequence variants (ESVs) to interpret and assess the impact of agricultural pressure on stream diatom assemblages revealed by DNA metabarcoding. Ecol Indic 122:107322. https://doi.org/10.1016/j.ecolind.2020.107322

    Article  Google Scholar 

  20. Porter TM, Hajibabaei M (2020) Putting COI metabarcoding in context: the utility of exact sequence variants (ESVs) in biodiversity analysis. Front Ecol Evol 8. https://doi.org/10.3389/fevo.2020.00248

  21. Song Z, Schlatter D, Gohl DM, Kinkel LL (2018) Run-to-run sequencing variation can introduce taxon-specific bias in the evaluation of fungal microbiomes. Phytobiomes J 2:165–170. https://doi.org/10.1094/PBIOMES-09-17-0041-R

    Article  Google Scholar 

  22. Cobian GM, Egan CP, Amend AS (2019) Plant–microbe specificity varies as a function of elevation. ISME J 13:2778–2788. https://doi.org/10.1038/s41396-019-0470-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darcy JL, Swift SOI, Cobian GM, Zahn GL, Perry BA, Amend AS (2020) Fungal communities living within leaves of native Hawaiian dicots are structured by landscape-scale variables as well as by host plants. Mol Ecol 29:3102–3115. https://doi.org/10.1111/mec.15544

    Article  Google Scholar 

  24. Wainwright BJ, Zahn GL, Spalding HL, Sherwood AR, Smith CM, Amend AS (2017) Fungi associated with mesophotic macroalgae from the ‘Au‘au Channel, west Maui are differentiated by host and overlap terrestrial communities. PeerJ 5:e3532. https://doi.org/10.7717/peerj.3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tipton L, Zahn G, Datlof E, Kivlin SN, Sheridan P, Amend AS, Hynson NA (2019) Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. PNAS 116:25728–25733. https://doi.org/10.1073/pnas.1907414116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peay KG, von Sperber C, Cardarelli E, Toju H, Francis CA, Chadwick OA, Vitousek PM (2017) Convergence and contrast in the community structure of bacteria, fungi and archaea along a tropical elevation–climate gradient. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fix045

  27. Vannette RL, Leopold DR, Fukami T (2016) Forest area and connectivity influence root-associated fungal communities in a fragmented landscape. Ecology 97:2374–2383. https://doi.org/10.1002/ecy.1472

    Article  PubMed  Google Scholar 

  28. US Geological Survey Hawaiian Volcano Observatory scientists and colleagues (2003) Once a big island, Maui Count now four small islands. Volcano Watch

  29. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, de Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend AS, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol n/a-n/a. https://doi.org/10.1111/2041-210X.12073

  30. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  32. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264. https://doi.org/10.1093/nar/gky1022

    Article  CAS  PubMed  Google Scholar 

  34. Oksanen J, Blanchet FG, Friendly M, et al (2016) vegan: community ecology package

  35. Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1

    Article  Google Scholar 

  36. Preston FW (1948) The commonness, and rarity, of species. Ecology 29:254–283. https://doi.org/10.2307/1930989

    Article  Google Scholar 

  37. Prado PI, Miranda MD, Chalom A (2016) sads: maximum likelihood models for species abundance distributions

  38. Dormann CF (2011) How to be a specialist? Quantifying specialisation in pollination networks. Network Biology

  39. Dormann CF, Gruber B, Fründ J (2008) Introducing the bipartite Package: analysing Ecological Networks. 8:4

  40. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9. https://doi.org/10.1186/1472-6785-6-9

    Article  PubMed  PubMed Central  Google Scholar 

  41. (2018) Epicoccum hordei CGMCC 3.18360 ITS region; from TYPE material

  42. Davison J, Moora M, Öpik M et al (2015) FUNGAL SYMBIONTS. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. https://doi.org/10.1126/science.aab1161

    Article  CAS  PubMed  Google Scholar 

  43. Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, de Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688

    Article  CAS  PubMed  Google Scholar 

  44. Carthey AJR, Blumstein DT, Gallagher RV, Tetu SG, Gillings MR (2020) Conserving the holobiont. Funct Ecol 34:764–776. https://doi.org/10.1111/1365-2435.13504

    Article  Google Scholar 

  45. Eren AM, Borisy GG, Huse SM, Welch JLM (2014) Oligotyping analysis of the human oral microbiome. PNAS 111:E2875–E2884. https://doi.org/10.1073/pnas.1409644111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bidartondo MI (2008) Preserving accuracy in GenBank. Science 319:1616. https://doi.org/10.1126/science.319.5870.1616a

    Article  CAS  PubMed  Google Scholar 

  47. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006

    Article  Google Scholar 

  48. Sinclair L, Ijaz UZ, Jensen LJ, Coolen MJL, Gubry-Rangin C, Chroňáková A, Oulas A, Pavloudi C, Schnetzer J, Weimann A, Ijaz A, Eiler A, Quince C, Pafilis E (2016) Seqenv: linking sequences to environments through text mining. PeerJ 4:e2690. https://doi.org/10.7717/peerj.2690

    Article  PubMed  PubMed Central  Google Scholar 

  49. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565. https://doi.org/10.1111/j.1365-294X.2010.04898.x

    Article  CAS  PubMed  Google Scholar 

  50. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189. https://doi.org/10.1186/1471-2180-10-189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Nhu Nguyen for contributing previously unpublished data. We would also like to thank Katie Lund for assisting with sample processing. This research was made possible in part by an award to A.S.A. and N.A.H. from the W.M. Keck Foundation and The National Science Foundation, award numbers 1556856 & 1255972. L.T. was funded by the Alfred P. Sloan Foundation Microbiome of the Built Environment Postdoctoral Fellowship and would like to thank the Hawaii Data Science Institute and the UH Cyber Infrastructure team for their HPC support.

Data Accessibility and Code Availability

DNA sequences are in the NCBI SRA under the accession numbers shown in Table 1. Final ASV table, sample metadata, and code can be found at https://github.com/ltipton/HIMycobiome. Complete ASV database will be uploaded to the Hawaii Data Science Institute repository at https://himycobiome.its.hawaii.edu.

Funding

This research was made possible in part by an award to A.S.A. and N.A.H. from the W.M. Keck Foundation and The National Science Foundation, award numbers 1556856 & 1255972. L.T. was funded by the Alfred P. Sloan Foundation Microbiome of the Built Environment Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

N.A.H., A.S.A., and L.T. designed the research; G.L.Z. and A.S.A. performed the research; L.T., J.L.D., and G.Z. analyzed the data; all authors contributed to manuscript preparation and editing.

Corresponding author

Correspondence to Nicole A. Hynson.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Supplementary Information

ESM 1

(CSV 70037 kb)

ESM 2

(DOCX 3256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tipton, L., Zahn, G.L., Darcy, J.L. et al. Hawaiian Fungal Amplicon Sequence Variants Reveal Otherwise Hidden Biogeography. Microb Ecol 83, 48–57 (2022). https://doi.org/10.1007/s00248-021-01730-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01730-x

Keywords

Navigation